Tipping Points in Weather Prediction

Extreme sensitivity of forecasts to the atmospheric state and what to do about it
“Ordinary” Forecasts

Extended Forecast for Phoenix AZ

Today	Tonight	Saturday	Saturday Night	Sunday	Sunday Night	Monday	Monday Night	Tuesday
Sunny | Clear | Sunny | Clear | Sunny | Partly Cloudy | Partly Sunny | Mostly Cloudy | Mostly Sunny

Not what we are talking about
Error growth is localized and “feature” based

Judt, 2018: JAS
Extreme Sensitivity

- Indicative of strong non-linearity and extreme error growth
- Often applied to the climate system, but is more general
- Deterministic prediction is difficult (impossible?) when system is in a state of extreme sensitivity

Palmer 1999, ECMWF
Types of Thresholds

- Convective initiation (T)
- Transition to very uncertain state
- Tropical Cyclone Formation and Intensification (V);
 Warm-front passage (T)
- Uncertain transition
- Cyclone Tracks (X,Y)
- Transition to separated states (e.g. clusters)
Convection Initiation

$B_{\text{min}} \approx 0$ is “tipping point”

$$\left(\frac{\partial B}{\partial t}\right)_{p_B} = \frac{\partial T_{vp}(p_B)}{\partial t} - \frac{\partial T_{ve}(p_B)}{\partial t}.$$

Large trend means even if $B_{\text{min}} \approx 0$, system may have some predictability
Deformation and Blocking

• tropical convection – mid-latitude interaction
• hurricane motion
• Split flows and blocking

Torn et al., 2018: MWR
What can be done about extreme sensitivity?

• Relate ensemble spread to features to simplify interpretation
 • Already done informally in forecasting
 • Machine learning (e.g. Gagne et al. 2017, W&F)

• Focused observations for specific sensitivities
 • example: TC position relative to axis of contraction (in deformation)

• Predict the predictability: quantify forecast confidence $C(t)$

Hypothesis: Even with extreme sensitivity, the time of a marked change in confidence may be predicted, even if the outcome itself cannot be.
Emergency Manager (EM) wants forecast at day 7: Will there be a major hurricane (MH)?

$P(MH) \sim 0.35$

EM says that is not good enough to make a decision.

When will EM know with 80% confidence about a MH at day 7?

If you say ‘Day 6’, you are fired.
Two issues:
1. Uncertainty for a given environment
2. Uncertainty about the environment

\[P(MH, t=0) \sim 0.35 \text{ (at 168 h)} \]

\[P(\text{red}) = P(MH) \sim 0.7 \]
\[P(\text{green+blue}) = P(\text{no MH}) \sim 0.3 \]

- Now, consider the full distribution of possible observations
- Then consider observations preceding this time
Mesoscale Predictability Experiment

One could ask: Given the actual observing system, and its errors, when will I know more certainly the rainfall in the box?

Drops here will have the largest influence on rainfall 12 h later in box

Trapp et al., 2015: BAMS
Summary

- Extreme sensitivity => extreme uncertainty
- Predicting “confidence” in a scenario
- Advances: Ensemble techniques, ensemble sensitivity (or adjoint sensitivity)
- Issues: Does this make any sense? More formalism
- Challenges
 - Relate ensemble variation to “features”
 - Requires clustering in ensemble outcomes
 - Challenges: coupling machine learning and data assimilation
- Requires reduced model error; focused observations may help