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ABSTRACT3

AutoNowCaster (ANC) is an automated system that nowcasts thunderstorms, including4

thunderstorm initiation. However, its parameters have to be tuned to regional environments,5

a process that is time-consuming, labor-intensive and quite subjective. When the National6

Weather Service decided to explore using ANC in forecast operations, a faster, less labor-7

intensive and objective mechanism to tune the parameters for all the forecast offices was8

sought.9

In this paper, a genetic algorithm approach to tuning ANC is described. The process10

consisted of choosing data sets, employing an objective forecast verification technique and11

devising a fitness function. ANC was modified to create nowcasts offline using weights iter-12

atively generated by the genetic algorithm. The weights were generated by probabilistically13

combining weights with good fitness, leading to better and better weights as the tuning14

process proceeded.15

The nowcasts created by ANC using the automatically determined weights are compared16

with the nowcasts created by ANC using weights that were the result of manual tuning. It is17

shown that nowcasts created using the automatically tuned weights are as skilled as the ones18

created through manual tuning. In addition, automated tuning can be done in a fraction of19

the time that it takes experts to analyze the data and tune the weights.20

1. Introduction21

High quality nowcasts of thunderstorms have the potential to be a tremendous benefit22

to the general public. Properly integrated as a critical impact factor into management of23
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the National Air Space, they could help reduce the lengthy air traffic delays commonly24

experienced during the spring and summer in the United States. According to economic25

statistics published by NOAA1, 70 percent of air traffic delays are attributed to weather.26

Since 2006, the National Weather Service (NWS), in collaboration with the National27

Center for Atmospheric Research (NCAR), has been testing an automated system for now-28

casting thunderstorms at the Dallas/Fort Worth Weather Forecast Office (WFO), hereafter29

referred to as FWD. The system, known as “AutoNowCaster” or ANC (Mueller et al. 2003;30

Wilson and Mueller 1993; Wilson et al. 1998), was also recently installed at the Melbourne,31

FL WFO.32

ANC uses a fuzzy logic algorithm based on conceptual models of storm initiation, storm33

growth, and storm dissipation. The system assimilates a variety of datasets to analyze char-34

acteristic features of the atmosphere associated with pre-storm environments, and to produce35

60-minute nowcasts of storm initiation, growth and dissipation. These analyses include eval-36

uation of convective instability, moisture convergence, and trigger mechanisms to produce37

interest fields (Table 1) that are used as inputs to the fuzzy logic algorithm. The interest38

fields used in the storm initiation algorithm are converted into dimensionless likelihood fields39

using fuzzy membership functions. These likelihood fields have a dynamic range from -1 to 140

with increasing positive values used to indicate regions of increasing likelihood of storm initi-41

ation. The various likelihood fields are weighted using values determined by human experts,42

and the weighted likelihood fields are summed to produce a combined likelihood field that43

is then filtered and smoothed. Regions with values greater than 0.7 in the combined filtered44

and smoothed likelihood field are indicative of storm initiation in the next 60 minutes. An45

1www.weather.gov/com/2004 economic statistics1.pdf
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example of an ANC nowcast of convective initiation is shown in Figure 2c. For a detailed46

description of the AutoNowCaster system, the reader is directed to Mueller et al. (2003);47

Wilson and Mueller (1993).48

Forecasters guide ANC by drawing boundaries along which convection is anticipated and49

by selecting a convective regime such as cold front or dry line. For each regime it is possible50

to have a different set of predictor fields, membership functions and weights.51

ANC uses an idealized conceptual framework to tune the weights of the various interest52

fields used to nowcast storm initiation for each convective regime. The tuning is done manu-53

ally using a limited set of cases by visually examining results for each regime to determine if54

the predictor fields are applicable or in need of adjustment. The time required for an expert55

to visually inspect the nowcasts and up to 17 different predictor fields for a representative56

sample of data for each regime makes manually tuning ANC impractical. Additionally, it is57

unrealistic to assume that an expert will be able to come up with the optimum set of weights58

because convective initiation is fairly complex and representative datasets are relatively large.59

The NWS is currently exploring a concept of operations for ANC with the goal of provid-60

ing valuable thunderstorm nowcasts to the aviation community and the public. To enable61

deployment of ANC nationwide, an automatic way of tuning ANC is necessary. In the rest62

of this paper, we describe the development of an automated tuning mechanism for ANC.63

This approach described here may be applicable to the tuning of other, multi-parameter,64

complex systems for operational uses.65
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a. Genetic Algorithm66

A genetic algorithm (Goldberg 1989) is a search-and-optimization technique that is built67

to mimic the process of Darwinian evolution by modeling processes such as inheritance, mu-68

tation, selection and crossover. Genetic algorithms have been widely used in meteorology to69

find breakpoints of fuzzy functions (Lakshmanan 2000), to validate dispersion models (Haupt70

et al. 2006), to optimize mesoscale models (O’Steen and Werth 2009) and to find consensus71

forecasts from ensembles (Roebber 2010; Bakhshaii and Stull 2009).72

Where genetic algorithms excel over traditional optimization techniques is in their ability73

to handle non-differentiable error functions. Optimization techniques based on gradient74

descent, for example, require that the error function be a differentiable function of the75

parameters to be tuned. Thus, gradient descent is a workable solution for backpropagation76

single-layer neural networks where the error function is often a least squares error and each77

prediction is a weighted sum of transformed inputs with the transformation being an easily78

differentiated function such as a logistic exponential function. Genetic algorithms have no79

such restriction. They can easily handle error functions that are non-linear, non-continuous,80

and even completely unknown functions of their inputs. This makes genetic algorithms a81

particularly good choice to tune a “black box” system that only exposes a few tuneable82

parameters.83

In a genetic algorithm, the search is carried out in parallel, with a fixed number of po-84

tential solutions evaluated at each step. These potential solutions are termed chromosomes,85

the iterations are called generations, and the group of chromosomes at a generation is called86

a population. Thus, a genetic algorithm consists of finding better and better populations of87
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chromosomes after each generation. The chromosomes themselves consist of “genes,” which88

are the tuneable parameters. Instead of an error function being minimized, the formulation89

is in terms of the chromosome’s “fitness” being maximized.90

In our genetic algorithm, the weights (in the range 0 to 1) of the different ANC predictor91

variables are the genes. All the weights of all the predictor variables together form the92

chromosome. Although it is conceivable that the GA can also be used to tune the breakpoints93

of the fuzzy membership functions, we did not do so. We retained ANC’s “factory” settings94

for the membership functions, and changed only the weights of the predictor variables in95

order to attain good nowcasts for all the training cases. Also, although it is possible to96

tune the weights for all the nowcasts produced by ANC, we concentrate in this paper on the97

nowcast of convective initiation.98

A genetic algorithm improves the fitness of a population by applying Darwinian selection99

principles to create the population at the next generation. The population at the next gener-100

ation consists of chromosomes that are formed mostly by crossing over a pair of chromosomes101

at the current generation. Since the chromosomes are essentially just a list of tuneable pa-102

rameters, crossover involves merely choosing some parameters from the first chromosome and103

the remaining parameters from the second one. This choice of parameters is done randomly104

so that different children of the same pair of chromosomes could be different. Optimization105

occurs because of how the pair of chromosomes is chosen: the best fit individuals are chosen106

probabilistically, i.e., if we imagine a pie divided into slices, one for each chromosome, the107

size of the slices is directly proportional to the fitness of the chromosome (See Figure 1a).108

Thus, when a pair of chromosomes are randomly chosen, higher-fit individuals are more109

likely to be chosen, with the likelihood given by the fitness of the chromosome relative to the110
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average fitness of its generation. These two chromosomes are then crossed over, i.e., some111

genes selected from one chromosome and others from the other chromosome (See Figure 1b),112

to yield a new chromosome whose fitness can be calculated.113

Although crossover is the main mechanism by which the next population of chromosomes114

is formed, a few other evolutionary principles are added because it has been shown (Gold-115

berg 1989) that inheritance, mutation and diversity improve the performance of a genetic116

algorithm. Some individuals are formed not by crossing over a pair of chromosomes from the117

previous generation, but by simply copying over a well-fit individual from the previous gen-118

eration (“inheritance”). As a special case of inheritance, the best fit member of a population119

is always retained in the next generation, so as not to lose the best parameters discovered120

during the search. Mutation is carried out by taking a crossed-over or inherited chromosome121

and slightly modifying some of its genes (See Figure 1c). This enables the search space to122

be locally expanded. The average fitness of a population converges rapidly when successive123

populations are carried out using the evolutionary paradigm. However, there is no guarantee124

that this convergence is to a global optimum. Therefore, it is usually worthwhile to keep the125

search space as wide as possible, to take advantage of the parallel local search afforded by a126

genetic algorithm. Thus, in addition to choosing chromosomes probabilistically based on fit-127

ness, a diversity penalty is added so that the size of the slice in the probability pie decreases128

once a chromosome has been chosen from it. Finally, because the genetic algorithm is guar-129

anteed to converge, but not even to the local maxima, we periodically carried out simulated130

annealing (Metropolis et al. 1953), a local search and optimization technique, around the131

population to push each member of the population to its local maximum. Because of this,132

in Figure 4, one sees all the chromosomes in the population pushed to the local maximum133
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at any generation where simulated annealing is carried out.134

In our genetic algorithm implementation for this study, we initialized the population by135

randomly generating the chromosomes. Each population consisted of 200 chromosomes. The136

crossover probability was 0.7, the mutation probability was 0.005, and 75% of the population137

was randomized after simulated annealing, which was carried out every 10 generations. The138

genetic algorithm process was carried out until the fitness improvement was below 0.001 for139

30 generations or for 100 generations.140

2. Method141

Over the last few years, scientists at NCAR, in close collaboration with FWD, have col-142

lected case studies to be used for tuning ANC. The case studies cover the primary convective143

regimes that affect North Texas during the course of a normal convective season. Some of144

these cases, as well as the data collected during a five-week Intensive Operations Period145

conducted at FWD by the NWS’s Meteorological Development Laboratory (MDL) between146

April 19 and May 23, 2010, were used in this study. The cases studied are classified per147

convective regime and human involvement with ANC as shown in Table 2.148

Prior to the implementation of ANC at FWD, the system was running with only one set149

of fuzzy logic rulesets. The system was modified to allow the forecaster to select one of the150

multiple logic rulesets that are tailored to different synoptic regimes typically experienced in151

Texas. Currently, the system is implemented with six convective regimes: the default regime152

referred to as the mixed regime, cold front, dryline, stationary/warm front, pulse storm, and153

advecting MCS. The mixed regime served as the basis for the development of the rulesets154
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for all the other regimes. The mixed regime is selected when the forcing of convection is155

unclear or a variety of forcing is expected within the domain.156

a. Forecast Verification157

A critical element to iteratively tuning ANC is to determine whether, with a new set of158

weights, ANC’s nowcasts are improved. This is determined by running ANC with the new159

set of weights and comparing the resulting nowcast fields with ground truth, i.e., with what160

actually happened 60 minutes later.161

Comparing the forecast field with ground truth is known as forecast verification and is an162

extensively researched issue in meteorology. Sophisticated methods of forecast verification163

are needed because straightforward pixel-to-pixel measures of error suffer from a double-164

penalty issue whereby forecasts are unduly penalized for displacement errors. Many of the165

methods of forecast verification that have been proposed in the literature can be broadly cate-166

gorized (Gilleland et al. 2009) into filtering-based methods that operate on the neighborhood167

of pixels (e.g., Ebert (2009)), displacement-based methods that rely on features (e.g., Davis168

et al. (2006)) and displacement methods that rely on field deformation (e.g., Keil and Craig169

(2007)). Newer methods such as that of Lakshmanan and Kain (2010) blur these categories170

somewhat as does the verification method described in this paper.171

We need to determine whether ANC’s nowcast of convective initiation over the next 60172

minutes is correct. This is harder than verifying, say, precipitation forecasts because there173

is no direct observation of initiation. What we do have are radar reflectivity images that174

cover ANC’s domain (See Figure 2). Images 60 minutes apart have to be examined to find175
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where new convection has happened. We do this by warping the past observation to best176

align it with the current observation, using a cross-correlation optical flow method (Barron177

et al. 1994; Wolfson et al. 1999) to determine the warp. Essentially, this involves finding a178

smooth motion field based on the two images and then advecting the second grid backwards179

to align it with the first. Once the two images have been aligned, pixels that were below180

the convective threshold (we used 35 dBZ to fit with ANC’s definition of convection) that181

are now greater than the convective threshold are considered to be convective initiation.182

However, such a direct pixel-to-pixel match would lead to too many pixels on the boundaries183

of storms being marked as having initiated. Therefore, we searched in a 5x5 neighborhood184

(approximately 5km x 5km) and considered a pixel above the convective threshold as having185

initiated only if there was no above-threshold pixel in the 5x5 neighborhood of this pixel.186

Using such a distance threshold provides some leeway for small errors in the motion estimate.187

Thus, the formulation of our truth field involved both warping and neighborhood processing.188

After aligning the pair of images, we classified each pixel of the radar image into one of189

these categories:190

• New Convection: The pixel in the second image is above the convective threshold and191

there is no pixel in a 5x5 neighborhood of this pixel in the (aligned) first image that is192

above the convective threshold.193

• Ongoing Convection: The pixel in the second image is above the convective threshold194

but there is at least one pixel in a 5x5 neighborhood of this pixel in the (aligned) first195

image that is above the convective threshold.196

• Not Convective: The pixel in the second image is not above the convective threshold.197
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In Figure 3c, we show four categories, but Decayed convection is lumped along with198

Not Convective for purposes of verification since our scoring will treat them the same.199

This field created by aligning the pair of images and classifying the pixels is termed the200

verification field.201

Once the verification field has been created from pairs of radar reflectivity images spaced202

60 minutes apart, a nowcast of convective initiation can be compared against the verification203

field valid for the time of the nowcast. To do this, we create a contingency table (Wilks204

1995) considering every grid point of the nowcast field and classify each pixel in the domain205

into one of these categories:206

• Don’t Care: A pixel that is Ongoing Convection in the verification field is classified207

as being one that we don’t care about. ANC was neither penalized nor rewarded for208

categorizing ongoing convection as Convective Initiation (CI).209

• Hit: The nowcast pixel is CI and there is New Convection in the verification field210

within a 5x5 neighborhood.211

• False Alarm: The nowcast pixel is CI but there is no New Convection in the verification212

field within a 5x5 neighborhood.213

• Miss: The pixel in the verification field is New Convection and no nowcast pixel in a214

5x5 neighborhood is CI.215

• Null: None of the above categories.216

Once the hits, misses, false alarms and nulls are determined, the contingency table is complete217

and can be used to compute a skill score.218
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b. Fitness Function219

The best ANC weights are those weights that produce good nowcast skill across a diverse220

set of training cases. Consequently, the skill score was computed in two ways: on a single221

nowcast basis and on the training set as a whole. The Critical Success Index (CSI Donaldson222

et al. (1975)), for example, was computed in two ways: by taking into account the hits, misses223

and false alarms for all the pixels in a single nowcast and by taking the hits, misses and false224

alarms for all the pixels in all the nowcasts.225

The fitness score was defined as:226

f = 0.3CSIall + 0.3CSIavg + 0.3CSImin + 0.1HSSall (1)227

where228

CSI =
hits

hits + misses + false alarms
(2)229

and CSIall is computed by considering the hits over all the pixels in all the training cases230

while the CSIavg and CSImin refer to the average and minimum of the CSI computed for231

each of the nowcasts used for training. While it is possible for the CSIall to be high just by232

getting a few of the training cases right, the use of CSIavg and, especially, CSImin rewards233

the genetic algorithm for choosing weights that work well on all the training cases. The CSI234

is used even though its shortcomings are well-known (See Marzban (1998) for a discussion)235

because it was the measure of performance used in earlier validation studies of ANC. The236

CSI by itself is inappropriate for genetic algorithm training because chromosomes with237

extremely bad parameters will result in CSIs of zero (all of which have no hits) and hence238

it is not possible to rank the chromosomes at the beginning of the training cycle (when we239
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start with a population of random chromosomes). Therefore, we incorporated the Heidke240

Skill Score (HSS Heidke (1926)) into our fitness function. The HSS is defined as241

HSS =
2 ∗ (nulls ∗ hits−misses ∗ false alarms)

(false alarms + hits) ∗ (false alarms + nulls) + (nulls + misses) ∗ (misses + hits)

(3)242

and is used so that the nulls play a small role in the verification measure. Since the CSIs243

are weighted significantly higher, the HSS contributes mostly when CSI is near zero. In244

such situations, the relative number of false alarms and nulls play a factor in the ranking of245

chromosomes because of the HSS.246

c. Data247

The data used to tune ANC came from an archival store of ANC-generated nowcast248

interest fields kept at NCAR. The geographical area covered by the data includes FWD; the249

range of dates spanned by the data is 27 August 2006 through 14 May 2010. This domain250

was chosen because it provides a convenient way to compare the results of automated tuning251

with the performance of ANC tuned by human experts (Nelson et al. 2005).252

Part of the role of the forecaster in ANC is to choose the convective weather regime and to253

indicate where boundaries are present. ANC convective weather regimes were selected during254

the days of the forecasts by the forecasters at FWD. The convective weather regimes which255

ANC allows for selection are cold front (CF), dry line (DL), mesoscale convective system256

(MC), mixed (MX), pulse storm (PS), and stationary/warm front (SW). It is important to257

note that the MX regime is meant to be selected when a forecaster either cannot identify the258

mode of convection or cannot select a clearly dominant mode of convection from multiple259

12



modes which are present.260

Each of ANC’s convective weather regimes is parameterized by the set of nowcast interest261

fields which are thought to play the greatest roles in the development of convective initiation262

in that regime. Table 1 provides a description of these interest fields and shows in which263

regimes each field is a parameter.264

Because the input fields differ in spatial resolution, every field is interpolated to the265

smallest, highest resolution grid among the set of fields, i.e., to the common area covered by266

all the inputs (1km resolution covering FWD’s domain). Temporally, ANC allows for the267

fact that fields may not be calculated at their expected frequency. For example, failed con-268

nectivity to the requisite raw data servers could prevent model output from being available269

for more than one hour. In such circumstances, ANC uses the closest-in-time prior fields270

that it can retrieve within allowed, field-dependent maxima of time. Table 1 shows these271

time-retrieval maxima. If it so happens that a field is both not currently available and not272

retrievable within the maximum allowed time in the past, no nowcast is generated.273

Exploratory tuning scenarios were investigated in order to determine the optimal method-274

ology to use for conducting this study. The final methodology is as follows.275

i. The dates of interest were divided into groups; each group represented those dates for276

which one and only one ANC convective weather regime was considered to be present.277

ii. For each date within a group, nowcast times were chosen solely from the time frame278

of convective initiation or, if that time frame wasn’t available, from the time frame of279

active weather.280

iii. From the selected time frame, the nowcast times that both (a) obeyed the relation281
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HH + 15 min <= nowcast time < HH + 30 min, where HH indicates the top of282

the hour of the nowcast, and (b) were the earliest times at which all of the fields283

were available, and none of the fields needed to be retrieved from a prior hour, were284

chosen. Thus, for any given HH, only a single nowcast time was selected (if at all). The285

above restrictions are considered valid because multiple exploratory tuning scenarios286

which differed solely with respect to the number and time distribution of nowcasts287

in an hour yielded sufficient evidence to conclude that, for the purpose of tuning288

ANC automatically, only one nowcast per hour was necessary, and nowcasting at or289

shortly after the first quarter-hour would allow for the latency at which real-time model290

nowcasts are available.291

It is important to note that methodology elements one through three guarantee neither292

an equal number of nowcast dates per convective weather regime nor an equal number of293

nowcast times per date. The latter consequence is considered unimportant. However,294

the former consequence bore on the need to have as consistent a methodology as295

possible across regimes. The process of tuning requires not only nowcast dates and296

times with which to tune but also nowcast dates and times to use for independent297

testing of the tuning’s results. Thus, two further restrictions were placed.298

iv. For each regime, only three nowcast dates were used for tuning.299

v. For each regime, three tuning scenarios were run. Each scenario used two of the three300

nowcast dates for tuning; the third date was used as the independent control.301

The final sets of nowcast dates and times per ANC convective weather regime are shown302

in Table 2.303
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For verification purposes, the radar reflectivity field closest in time to the nominal time304

of the nowcast, i.e., 60 minutes from the nowcast time, was used. The time discrepancy305

between the nowcast field and the verification was never more than 7 minutes.306

The interest fields and verification fields were provided to the genetic algorithm which307

ran ANC to create a variety of nowcasts, one for each chromosome in the population. Based308

on the fitness of each set of weights (chromosomes), the next population was created through309

an evolutionary algorithm. At each generation, the population increased in fitness, as shown310

in Figure 4. The fittest chromosome after the genetic algorithm converged was chosen as the311

final set of weights, herein after referred to as the automatically tuned weights.312

3. Results313

Table 3 summarizes the results from the three tuning scenarios for each convective weather314

regime. For each scenario, both the nowcast dates used for tuning and the corresponding315

control date are shown. Alongside these is recorded the final overall fitness of the tuning316

dates’ nowcasts generated by the best-fit regime weights calculated by the genetic algorithm317

software. For the purpose of comparing the prior, subjectively-tuned, regime-specific weights318

with the objectively-tuned, regime-specific weights output by the genetic algorithm software,319

the final overall fitness of the control date’s nowcasts was calculated using both sets of320

weights. The results of these calculations are also shown in the table. The run time of each321

scenario is also noted. All of the tuning scenarios were run on a Dell PowerEdge R710 server322

with 32 GB of memory, two 2.93 GHz, hyper-threaded, dual-core Intel Xeon X5570 CPUs323

and running the CentOS operating system.324
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From Table 3, it is clear that, for the CF, DL and MC regimes, the objectively-tuned325

weights yield better nowcasts than do the subjectively-tuned weights. As measured by the326

fitness values, the range of improvement is between 5 and 110 percent. The MX, PS and SW327

regimes yielded mixed results. For the MX regime, only one-third of the scenarios appear328

to yield better nowcasts using the objectively-tuned weights. Also, compared to the fitness329

of the tuning dates’ nowcasts, there is a huge drop-off in the fitness of the second scenario’s330

control date’s nowcasts for both the subjectively- and objectively-tuned weights. Such a331

drop-off is an indication, however, that the control date’s data are rather unique and, as332

such, should be included in the training dates, thus increasing the size of the dataset. It333

appears that using just two training cases is not enough for the mixed mode, since this334

category captures a wide variety of “unclassifiable” modes. The PS and SW regimes are335

similarly constrained; more training cases are needed to capture the full diversity of weather336

scenarios in these regimes.337

A goal of this study is to investigate the sensitivity of the MX regime’s weights to the338

modes of convective initiation, i.e., to determine whether or not a properly tuned MX regime’s339

weights could be used to generate statistically good enough nowcasts for every regime rather340

than needing to have specific weights for each regime. A driving force behind this avenue341

of investigation is the idea that, were ANC to be deployed for nationwide use, being able to342

use a single set of convective initiation weights would be a welcome simplification. Noting343

again that the selection of the MX regime by a nowcaster indicates either an undetermined344

(singular) mode of convection or an indeterminate dominant mode of convection among345

multiple modes, it is to be understood that, unlike the other regimes considered in this346

study, the MX regime isn’t pure. Rather, it represents an amalgamation of the other regimes347
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and, as such, cannot necessarily be tuned in the same manner. With reference to Table 3’s348

first MX regime scenario, it is entirely possible, for example, that the dominant mode of349

convection on the tuning dates was a dry line, whereas the dominant mode of convection on350

the control date was a cold front. It could be the case, then, that the objectively-tuned MX351

weights for this scenario would not nowcast the control date’s environment as well as the352

CF regime’s objectively-tuned weights would, because the tuning dates’ data would contain353

no CF-related signal. This leads to the hypothesis that, by using a combination of the pure354

regimes’ data and the MX regime’s data to tune the MX regime, the resulting set of weights355

will nowcast the environments of the pure regimes well enough that we would not need those356

separate regimes’ sets of weights. To test this hypothesis, additional tuning scenarios were357

created and run.358

The first such scenario used all of the MX regime’s nowcast dates, the second and third359

of the CF regime’s nowcast dates, the first and second of the DL regime’s nowcast dates, the360

first and third of the MC regime’s nowcast dates, and the first and third of the SW regime’s361

nowcast dates in order to tune the MX regime’s weights. In this manner, a control date362

remained for all of the “pure” regimes. Those control dates’ nowcasts were then generated363

using 1) the subjectively-tuned MX weights, 2) the objectively-tuned MX weights previously364

found by using MX-only data, and 3) the objectively-tuned MX weights found by using the365

aforementioned combination of MX and “pure” regime data. The final overall fitness of these366

nowcasts was then calculated. The overall magnitude of the CSI2 is quite low, but this is a367

limitation not of the tuning method, but of ANC itself. As noted in Wilson et al. (2010),368

present-day nowcasting systems do not possess a sufficient level of accuracy to disseminate369

2The fitness function is dominated by the CSI.
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the nowcast to users without human oversight. Instead, they are meant to be employed as370

decision aids.371

From Table 1 it may be noted that the MX regime does not incorporate two of the nowcast372

interest fields which are used in some of the “pure” regimes. Because the MX regime could373

be used, however, at times in which such fields might play a role, a second additional tuning374

scenario was run. This scenario was set up exactly as the first, except that the MX regime375

was tuned using all of the nowcast interest fields. As before, the control dates’ nowcasts were376

generated using the resulting weights, and the corresponding overall fitness value calculated.377

In manual tuning, no interest field is allowed to be weighted less than 0.08. The same378

criterion was applied to the automated tuning as well. A third additional training scenario379

was thus run, in which no field’s contribution was allowed to fall below 0.08.380

The results of these three additional scenarios are summarized in Table 4. In general,381

the automatically tuned MX weights generated by including all the “pure” regimes, using382

MX-only nowcast fields and allowing for weights less than 0.08 result in the best “pure”383

regime-specific nowcasts. The exception is the CF regime where the manually tuned MX384

weights perform marginally better.385

Comparing the results in Table 3 with those in Table 4 (details behind the CSI are listed386

in Table 5), it is clear that the regime-specific weights in Table 3 are not always better than387

the one-size-fits-all weights created using the MX regime. Indeed, it could be argued that388

by making it unnecessary for the forecaster to choose a regime, always using only the MX389

regime makes ANC easier to use.390

The weights of the different interest fields when manually tuned, and as obtained from the391

automated tuning system using the MX weights, are shown in Table 6. We wish to caution392
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that the relative values of the weights of interest fields are poor proxies for the importance393

of any interest field, since these interest fields are highly correlated. One way to determine394

the relative importance of a field is to leave it out, tune the system and check if there has395

been any resulting decrease in performance. We did not do this, so it is not clear how396

important any of these fields are. The zero weights indicate that, in the training data set,397

the information content provided by an interest field was probably already present in some398

of the other fields. Experts tuning ANC often attempt to have non-zero weights for each of399

the fields; such a constraint is one that we will experiment with in future work. It should400

also be realized that these weights are a result of training using data from the warm season;401

adding training cases from the cold season will presumably also affect the applicability of402

these weights.403

a. Summary404

From Table 3, it can be determined that the average run time for the regime-specific tun-405

ing scenarios is on the order of 24 hours, completely unattended. Thus, the amount of time,406

labor and cost required to create objectively-tuned, regime-specific weights is substantially407

less than the amount of time (several weeks) which is needed to create subjectively-tuned,408

regime-specific weights. In addition, these objectively-tuned weights outperform subjective409

tuning by human experts in nearly all cases and can easily be rerun, once datasets and410

membership functions are identified, for new interest fields. Following the objective tuning411

mechanism followed in this paper will, thus, enable the easy rollout of ANC to the large412

number of forecast offices envisioned by the US National Weather Service.413

19



We wish to emphasize that the automation is purely in terms of the one-time tuning of414

ANC weights. Forecast input is critical in choosing the training cases for automated tuning.415

In routine operation of ANC, forecaster input is critical in that forecaster-drawn boundaries416

are a key interest field for ANC.417

Also, in this paper, we limited the tuning to optimizing the weights of the various interest418

fields used by ANC. The interest fields themselves are created by applying a fuzzy member-419

ship function to model-derived or observed meterological variables. Forecasters should exam-420

ine the membership functions to ensure that they are reasonable for the dominant weather421

modes in their region. Lin et al. (2012) suggest that the fuzzy membership functions them-422

selves can be designed objectively using univariate conditional probabilities obtained from423

a long-term archive of data. Forecasters should also consider incorporating other predictor424

variables if these variables could help diagnose thunderstorm initiation.425

We suggest that operational forecasters use this process to customize ANC to their fore-426

cast area:427

i. Verify that the ANC predictor variables and membership functions are reasonable for428

the predominant weather modes in their region.429

ii. Choose a set of cases that illustrate the weather scenarios where gridded nowcast430

guidance would be helpful.431

iii. Draw boundaries to guide ANC (forecaster-drawn boundaries are a key interest field432

for ANC).433

iv. Use the automated system described in this paper to tune ANC weights in MX mode.434
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If it is found that ANC does not perform well on some scenario, we suggest that the forecaster435

add that case to the training dataset and retune ANC. We strongly caution against manually436

tuning ANC’s weights. An automated algorithm will be better able to balance the predictor437

field weights so as to obtain good performance on all the situations used in training. Finally,438

we suggest that there is little incentive to separate convective regimes, because the one-size-439

fits-all MX weights perform just as well as the regime-specific weights.440
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Interest Field Resolution, Grid Size, and Timing Convective Weather Regime
∆x ∆y Nx Ny ∆t Tmax CF DL MC MX PS SW

CAPE 20 20 55 55 60 195 X X X X X
CIN 20 20 55 55 60 195 X X X X X X
Likelihood of frontal
zone

20 20 55 55 60 195 X X X X X X

Relative humidity 20 20 55 55 60 195 X X X X X
Gradient of θε 20 20 55 55 60 195 X
Instability
1000− 700mb

20 20 55 55 60 195 X X X X X

Vertical velocity
700mb

20 20 55 55 60 195 X X X X X

Surface mass conver-
gence

10 10 400 400 5 20 X X X X X X

Lifting Index 10 10 400 400 5 20 X X X X X X
Areas along human-
denoted boundaries

2 2 360 330 6 14 X X X X X

Lifting area (collid-
ing boundaries)

2 2 360 330 6 14 X X X X X X

Vertical motion along
boundaries

2 2 360 330 6 14 X X

Steering flow relative
to boundary

2 2 360 330 6 14 X X X X X X

Cloud top tempera-
ture

1 1 1100 820 15 70 X X X X X X

Cloud-free areas 1 1 1100 820 15 70 X X X X X X
Areas with cumulus
and congestus clouds

1 1 1100 820 15 70 X X X X X X

Table 1. Descriptions of the different ANC nowcast interest fields, their spatial resolutions
(∆x and ∆y in kilometers), sizes (Nx × Ny pixels), the update rate (∆t in minutes), the
maximum amount of time in the past from which they can be retrieved to generate a nowcast
(Tmax in minutes). The Xs indicate ANC convective weather regimes in which the parameter
is an input. The weather regimes are cold front (CF), dry line (DL), mesoscale convective
system (MC), mixed (MX), pulse storm (PS), and stationary/warm front (SW). It can be
noted that four of the interest fields (areas along human-denoted boundaries, lifting area
associated with colliding boundaries, vertical motion along boundaries, and steering flow
relative to boundaries) are directly related to forecaster-drawn boundaries: these tend to be
very important.
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Regime Date Time
CF Aug. 27, 2006 14-21 Z

July 13, 2008 19-22 Z
July 15, 2008 19-23 Z

DL Apr. 24, 2007 16-23 Z
Mar. 31, 2008 17-23 Z
May 14, 2010 04-18 Z

MC Apr. 30, 2007 04-23Z
July 30, 2008 20-23 Z
July 31, 2008 19-23 Z

MX July 21, 2007 07-23 Z
Aug. 1, 2007 17-23 Z
Oct. 8, 2007 13-23 Z

PS May 12, 2007 17-23 Z
Sep. 3, 2007 13-23 Z
July 8, 2008 17-23 Z

SW May 2, 2007 01-23 Z
May 6, 2007 10-23 Z
May 27, 2007 01-23 Z

Table 2. The nowcast dates and times used in this study, subdivided by ANC convective
weather regime.
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Regime Tuning Dates Control Date Fitness Fitness of Control Date Time (hr)
(Train) Human GA ∆f (%)

CF 20060827, 20080713 20080715 0.195 0.106 0.112 5 20
20080713, 20060715 20060827 0.177 0.149 0.156 5 18
20060827, 20080715 20080713 0.168 0.122 0.185 51 23

DL 20070424, 20080331 20100514 0.184 0.112 0.144 28 21
20080331, 20100514 20070424 0.179 0.142 0.155 9 25
20070424, 20100514 20080331 0.168 0.155 0.184 19 21

MC 20070430, 20080730 20080731 0.144 0.045 0.092 105 25
20080730, 20080731 20070430 0.188 0.035 0.070 99 18
20070430, 20080731 20080730 0.135 0.088 0.185 111 25

MX 20070721, 20070801 20071008 0.153 0.130 0.139 7 27
20070801, 20071008 20070721 0.174 0.063 0.031 -51 24
20070721, 20071008 20070801 0.141 0.174 0.149 -14 27

PS 20070512, 20070903 20080708 0.139 0.159 0.164 3 17
20070903, 20080708 20070512 0.149 0.164 0.130 -21 17
20070512, 20080708 20070903 0.176 0.076 0.075 -1 16

SW 20070502, 20070506 20070527 0.142 0.046 0.083 82 27
20070506, 20070527 20070502 0.147 0.034 0.046 36 42
20070502, 20070527 20070506 0.137 0.111 0.099 -11 38

Table 3. The results of the three tuning scenarios for each ANC convective weather regime.
Each scenario is characterized by the nowcast dates (in YYYYMMDD format) used for
tuning, the corresponding control date, the final overall fitness of the nowcasts used for
tuning, the final overall fitness of the corresponding control date’s nowcasts using both the
subjectively-tuned and objectively-tuned regime-specific weights, the improvement seen by
using the genetic algorithm (GA), and the time taken by the GA to tune.
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Regime Control Date Automated tuning scenario Fitness CSI
Tuning Data Interest Fields Weights
Tuning Data Interest Fields ≥ 0.08?

CF 20060827 MX-only MX-only No 0.129 0.075
All MX-only No 0.130 0.082
All All No 0.144 0.097
All MX-only Yes 0.126 0.077

Manual tuning 0.146 0.103
DL 20100514 MX-only MX-only No 0.123 0.056

All MX-only No 0.155 0.099
All All No 0.125 0.052
All MX-only Yes 0.130 0.054

Manual tuning 0.116 0.031
MC 20080730 MX-only MX-only No 0.169 0.098

All MX-only No 0.185 0.110
All All No 0.182 0.111
All MX-only Yes 0.176 0.015

Manual tuning 0.096 0.018
PS 20070512 MX-only MX-only No 0.171 0.091

All MX-only No 0.191 0.126
All All No 0.184 0.107
All MX-only Yes 0.180 0.107

Manual tuning 0.166 0.102
SW 20070506 MX-only MX-only No 0.104 0.017

All MX-only No 0.117 0.037
All All No 0.103 0.020
All MX-only Yes 0.098 0.016

Manual tuning 0.109 0.024

Table 4. Different MX regime tuning scenarios applied to ANC’s pure weather regimes on
the control dates. The final overall fitness value of the control dates’ nowcasts using both
manual tuning and automatic tuning four different ways are shown. The best method of
tuning is highlighted.
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Regime Control MX weights Regime-specific weights
Date Fitness CSI POD FAR Fitness CSI POD FAR

CF 20060827 0.130 0.082 0.787 0.916 0.156 0.108 0.729 0.888
DL 20100514 0.155 0.099 0.381 0.883 0.144 0.084 0.15 0.843
MC 20080730 0.185 0.110 0.872 0.888 0.185 0.116 0.825 0.881
PS 20070512 0.191 0.126 0.742 0.868 0.130 0.063 0.882 0.936
SW 20070506 0.117 0.037 0.856 0.963 0.099 0.013 0.722 0.987

Table 5. Using regime-specific weights sometimes improves the performance of ANC over
always using the MX weights, but it is not clear-cut. Hence, it is possible that WFOs might
choose to let ANC always operate in MX mode.
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Interest Field Manually-tuned weight Auto-tuned weight
CAPE 0.20 0.12
CIN 0.12 1.00
Convergence 0.10 0.72
Likelihood of frontal zone 0.22 0.00
Areas along human-denoted boundaries 0.20 0.32
Cloud top temperature 0.10 0.23
Lifting Index 0.20 0.28
Lifting area (colliding boundaries) 0.12 0.35
Relative humidity 0.18 0.50
Cloud-free areas 0.40 0.51
Areas with Cu and CuC clouds 0.12 0.00
Boundary-relative steering flow 0.18 0.00
Instability 1000-700mb 0.12 0.00
Vertical velocity 700 mb 0.08 1.00

Table 6. A comparison of the weights obtained as a result of manual tuning and as a result
of automated tuning. The auto-tuned weight is the result of tuning on data consisting of all
the regimes and using the MX regime, i.e., it is not regime-specific.
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tion involves creating a new chromosome by modifying one of the genes of a554

parent chromosome. 36555

2 The top row shows (a) Radar observation on May 14, 2010 at 17:15 UTC. The556

domain is centered on the Dallas-Fort Worth WSR-88D (KFWS) and (b) the557

radar observation an hour later. The bottom row shows (c) 60-minute initia-558

tion nowcast at 17:15 UTC by manually tuned ANC (d) 60-minute initiation559

nowcast at 17:15 UTC by auto-tuned ANC. 37560

3 Top-to-bottom: (a) Radar observation on May 14, 2010 at 17:15 UTC (detail561

from Figure 2a; the location of the radar is marked as KFWS). (b) Radar562

observation an hour later. (c) Verification field created by warping the image563

at 17:15 and looking for new convection. The purples are decayed convection,564

reds are ongoing convection while the yellow is new convection. 38565
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4 The genetic algorithm iteratively tries different weights to improve the fitness.566

The solid line shows the fitness of the best member at each generation while567

the dotted line shows the means of the fitness values at each generation as568

training progresses. The sawtooth nature of the graphs is because of the569

periodic use of simulated annealing to perform a local search around each570

member. 39571
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Fig. 1. (a) In a genetic algorithm, chromosomes are chosen probabilistically, with better fit
chromosomes more likely to be chosen. The numbers represent the fitness of the chromosome
corresponding to the slice. (b) Crossover involves creating a new chromosome that contains
the first part of the chromosome of one parent and the second part of the chromosome
from another parent. The split point is chosen randomly. The numbers here represent the
parameters being tuned (in our case, the weights of each of the interest fields). (c) Mutation
involves creating a new chromosome by modifying one of the genes of a parent chromosome.
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Fig. 2. The top row shows (a) Radar observation on May 14, 2010 at 17:15 UTC. The domain
is centered on the Dallas-Fort Worth WSR-88D (KFWS) and (b) the radar observation
an hour later. The bottom row shows (c) 60-minute initiation nowcast at 17:15 UTC by
manually tuned ANC (d) 60-minute initiation nowcast at 17:15 UTC by auto-tuned ANC.
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Fig. 3. Top-to-bottom: (a) Radar observation on May 14, 2010 at 17:15 UTC (detail from
Figure 2a; the location of the radar is marked as KFWS). (b) Radar observation an hour later.
(c) Verification field created by warping the image at 17:15 and looking for new convection.
The purples are decayed convection, reds are ongoing convection while the yellow is new
convection.
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Fig. 4. The genetic algorithm iteratively tries different weights to improve the fitness. The
solid line shows the fitness of the best member at each generation while the dotted line shows
the means of the fitness values at each generation as training progresses. The sawtooth nature
of the graphs is because of the periodic use of simulated annealing to perform a local search
around each member.
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