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ABSTRACT

Verification methods for high-resolution forecasts have been based either on filtering or on

objects created by thresholding the images. The filtering methods do not easily permit the

use of deformation while identifying objects based on thresholds can be problematic. In this

paper, we introduce a new approach in which the observed and forecast fields are broken

down into a mixture of Gaussians, and the parameters of the Gaussian Mixture Model fit

are examined to identify translation, rotation and scaling errors. We discuss the advantages

of this method in terms of the traditional filtering or object-based methods and interpret

resulting scores on a standard verification dataset.
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1. Introduction

Intuitively, approximating a gridded field by a Gaussian Mixture Model (GMM) may be

thought of as the process of finding an optimal way to place Gaussian functions at various

points in the image such that the sum of these Gaussians mimics the input gridded field. As

shown in Figure 1, the larger the number of Gaussian components in the mixture model, the

more closely the image recreated using just the Gaussian components resembles the original

image.

Given the GMM that approximates two images (the forecast and observed), we show in

Section 3 that it is possible to analyze the parameters of the component Gaussians to infer

translation, rotation and scaling transformations.

a. Relationship to verification approaches

The new methods of verifying model forecasts that have been proposed can be catego-

rized into (a) filtering-based methods that operate on the neighborhood of pixels or on the

basis of decomposition and (b) displacement-methods that rely either on features or on field

deformation (Gilleland et al. 2009). Here, we propose a method of verification that does not

quite fall into any of these categories.

Our proposed method incorporates level of detail, like the filtering methods, in that

the approximation can be made as exact as desired by increasing the number of Gaussian

components allowed in the mixture. The most exact representation would be a mixture of

Gaussians of zero variance and a component centered at every grid point. However, our

proposed method operates neither on the neighborhood of pixels nor on the basis of wavelet-
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like decompositions.

We propose analyzing the entire image (like field deformation), but only to find a para-

metric approximation to the image. Field deformation approaches such as those of Alexander

et al. (1999); Keil and Craig (2007) employ non-parametric optical flow approaches. In our

approach, the parameters of the approximation are compared between the forecast and ob-

served fields to obtain insight into the transformations (translation, rotation and scaling)

that would make the fields most like each other.

In the use of transformations, the method of this paper resembles the feature-based ap-

proaches of Davis et al. (2006) but without the dependence on thresholds (either in intensity

or in size) to categorize ”objects”. Therefore, our approach is not quite ”object-based”. It

could, however, be considered feature-based if one were to extend the definition of ”feature”

to include the Gaussian components that form the mixture.

It should be noted that the GMM approach does require a threshold – only pixels with

intensity above that threshold will be considered in the GMM fit. For the precipitation fore-

cast fields of Figure 1, only pixels with rainfall amounts greater than 6.6mm, corresponding

to the top 10% of the pixel values in the image, were used to fit the GMM whereas for the

synthetic fields of Figure 2, only pixels with non-zero values were fit by the GMM. The differ-

ence between the GMM approach of this paper and the object-based approach of Davis et al.

(2006) is that in the GMM approach, this threshold does not determine what the ”objects”

are. Thus, as shown in Figure 1, one could have either 3 features or 50 by choosing to fit all

the pixels in the image above the 6.6mm threshold to either a GMM with 3 components or

to one with 50 components.
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b. Advantages of the GMM approach

There are several advantages to fitting an image with a GMM and using the fitted GMM

to carry out forecast verification:

i. There is no need to be concerned with splits or merges – if two contiguous regions are

better treated as a single region, then they will be approximated by a single Gaussian.

Conversely, a single, contiguous region may be broken up into multiple Gaussians if

needed for an optimal fit and if there are enough GMM components.

ii. The Gaussian is a parametric function. Thus, the GMM affords a highly compressed

view of the information in the data that is especially useful for comparing two images

for correspondence.

iii. The number of Gaussians used is a good measure of the level of detail at which the

image is being represented. For the verification problem, by changing the number of

Gaussians allowed in the mixture model, one can control the scale at which compari-

sions are carried out.

iv. Transformations of Gaussians correspond to easily identifiable changes in their pa-

rameters. Translation of objects corresponds to a change in the center point of the

Gaussian. Scaling (corresponding objects being smaller or larger in one of the fields)

can be inferred by changes in the variance of the Gaussian. Rotation of objects can be

inferred by changes in the ratio of the variance of the Gaussian in east-west and north-

south directions. Changes in the amplitude of the Gaussian correspond to changes in

intensity.
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The natural incorporation of level of detail is an important characteristic of filtering-based

methods. The natural incorporation of transformation is a key advantage of object-based

verification methods, especially because the detection of transformation permits verification

methods to avoid the ”double penalty” (Gilleland et al. 2009) problem. Thus, a GMM pro-

vides the advantages of both of these methods in a simple, mathematically elegant framework

that is also quite easy to implement.

The method by which a GMM is fit to forecast and observed fields is described in Sec-

tion 2. We present the results of comparing the GMM on fake geometric and perturbed cases

drawn from Ahijevych et al. (2009) and Kain et al. (2008) and make suggestions for further

work in Section 3.

2. Fitting a Gaussian Mixture Model

Fitting a GMM to an image for the purposes of forecast verification consists of the

following steps:

i. Initialize the GMM (Section 2c).

ii. Carry out Expectation-Minimization (EM) algorithm to iteratively ”tune” the GMM

(Section 2b).

iii. Store the parameters of each Gaussian component of the GMM (Section 2d).

iv. Compute translation, rotation and scaling errors from the GMM parameters corre-

sponding to the fits of the forecast and observed images (Section 2e).
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The strategy followed for initializing the GMM will be much more clear if it is preceded

by a mathematical description of the GMM and of the E-M algorithm. Hence, we define

a GMM in Section 2a and explain the EM algorithm that is used to fit the image to the

GMM in Section 2b before delving into the initialization strategy in Section 2c and listing

the parameters to be stored in Section 2d. Error metrics are defined in Section 2e and these

are used to determine the corresponding Gaussians in Section 2f.

a. The Gaussian Mixture Model (GMM)

The GMM is defined as a weighted sum of K two-dimensional Gaussians:

G(x, y) =
K∑

k=1

πkfk(x, y) (1)

where the amplitudes πk are usually chosen so that they sum to 1. Each of the two-

dimensional Gaussians, fk(x, y) is defined given the parameters µxk
, µyk

and Σxyk
as (drop-

ping the subscript k for convenience):

f(x, y) =
1

2π
√
|Σxy|

e−((x−µx)(y−µy))Σ−1
xy ((x−µx)(y−µy))T /2 (2)

µx, µy are the center of the Gaussian and Σxy the variance of the Gaussian i.e. Σxy is a

matrix whose components are:  σ2
x σxy

σxy σ2
y

 (3)

where σx is the standard deviation in the x direction and σxy the covariance of x and y.

|Σxy| is the determinant of the Σxy matrix. The scaling factor of the individual Gaussians

(1/(2π
√
|Σ|)) has been chosen so that the Gaussians sum to 1 over all x, y. If the πks are
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chosen to sum to 1, then the GMM also sums to 1 over the entire image. This allows a

probabilistic formulation that will be taken advantage of shortly.

b. The Expectation-Minimization (EM) method

Given a set of points xi, yi, it is possible to fit these points to a GMM, G(x, y), by

following an iterative method known as the expectation-minimization (EM) method. The

proof that this hill-climbing method works is available in many texts (e.g: Hand et al. (2001)

pages 260-263), so we’ll limit ourselves to describing the actual technique as it applies to the

problem of fitting a GMM to the set of points.

Assume that an initial choice of parameters µxk
, µyk

, Σxyk
exists for each of the K com-

ponents. Because the scaling factors have been chosen to add up to one, the probability (or

likelihood) that the point xi, yi is covered by the GMM given the set of parameters is given

by:

P (xi, yi|θ) =
K∑

k=1

πkfk(xi, yi|µxk
, µyk

, Σxyk) (4)

where θ is used as short-hand for all the parameters of all the K components.

The first step, known as the expectation-step or E-step, is to compute the likelihood of

this given set of parameters. The probability that the pixel xi, yi arose from the kth Gaussian

component is given by:

P (k|xi, yi, θ) =
πkfk(xi, yi|µxk

, µyk
, Σxyk

)

P (xi, yi|θ)
(5)

The second step, known as the minimization-step or M-step, is to update the parameters

of all the K components based on the above likelihood calculations. To obtain the µx, µy, Σxy
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of the kth component, the points xi, yi are weighted by Pk(xi, yi) before the appropriate

statistics are computed. For example,

µx = E(x) =

∑N
i=1(Pk(xi, yi)xi)∑N

i=1 Pk(xi, yi)
(6)

Similarly, µy is computed as E(y) and Σxy is computed as: E((x − µx)
2) E((x − µx)(y − µy))

E((x − µx)(y − µy)) E((y − µy)
2)

 (7)

Finally,the amplitude πk is computed as:

πk =
1

N

N∑
i=1

Pk(xi, yi) (8)

With the updated parameters, the E-step is carried out, a new set of likelihoods com-

puted, used to weight the points in the next M-step, and so on until convergence is reached.

The convergence is tested on the total likelihood of all the points at end of each M-step as

follows.

Recall that the probability that the point xi, yi is covered by the GMM given the set

of parameters is given by P (xi, yi|θ). From this, the probability that all the given points

are covered by the GMM is given by the product of P (xi, yi; θ) over all the points. To

avoid numerical instability errors when multiplying so many small numbers, the log of this

likelihood is computed instead:

l(θ) =
N∑

i=1

log(P (xi, yi)) (9)

When the improvement in l(θ) falls below some tolerance, the iterative E-M process can

be stopped. We stopped the E-M process when the improvement fell below 1% and found

that convergence happens in 5 to 10 iterations.
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The entire GMM fitting process is computationally very cheap. Each iteration of this

process consists simply of computing weights by summing up previously computed values

(Eq. 4,5) and then computing weighted averages (Eq. 6-8). We found that computing a

50-component GMM fit on a 500x600 image took just 0.05 seconds on a 1 GHz processor.

c. Initialization of the GMM

Recall that the E-step requires a set of components, and the weights computed at the

end of the E-step are required to create a set of components in the M-step. Thus, the EM

process has to be bootstrapped with some initial guess at a GMM. Then, the EM process

will start at that point and slowly climb towards the local maximum in likelihood space.

This problem, of only promising a local maximum, is a shortcoming of the EM method, but

it is not a critical problem in the case of weather images because we can initialize the GMM

near a ”good enough” solution.

In the case of weather images, we do know that contiguous pixels ”should” belong to

the same Gaussian. We can take advantage of this spatial coherence to place the initial

mixture components. The pixels in the image with valid data values are grouped into regions

consisting of contiguous pixels. These pixels are then arranged so that all the pixels in a

region are listed together. The carefully arranged list of pixels is broken into K equal parts

where K is the desired number of Gaussian components. Each pixel gets a weight of one for

”its” Gaussian component and zero for all other components i.e. if a pixel falls into the kth

group, the weight is one for the kth component and zero for all other components.

Thus, the initial condition consists of a number of Gaussian fits so that separate regions
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will tend to be fit to a Gaussian. Relatively large regions will be fit in parts to Gaussians.

From this initial point, the hill climbing approach of the EM method finds the best possible

fit. However, because the EM method is only a local optimization method, there may be a

better solution elsewhere but it may not be reached.

d. Parameters of the GMM

The GMM is completely specified by the following parameters: π, µx, µy, σx, σy and σxy

for each of the K Gaussian components of the GMM. Recall, however, the GMM was defined

so as to sum to 1, and that the EM method optimized the likelihood of the parameters given

the positions of the pixels (and not the intensity). Thus, two minor changes have to be made

to the GMM procedure explained above:

i. The total intensity associated with all the pixels in the image is stored and this value,A,

is used to scale the GMM so that the image intensities can be recreated i.e. the GMM

equation is modified to be:

G(x, y) = A
K∑

k=1

πkfk(x, y) (10)

ii. Because the EM method does not cater to the intensity, the more intensive locations are

repeated several times. This is done by creating a cumulative frequency distribution

(CDF) of the pixel values in the image and using a pixel’s location m times where m

is given by:

m = 1 + γ round(
CDF (Ixy)

freq(Imode)
) ∀ Ixy < Imode (11)

where Imode is the intensity corresponding to the most frequent quantization interval in
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the histogram of intensities used to compute the CDF. Pixel locations with intensities

lower than Imode are used only once. It is apparent that if the correction factor, γ, is

zero, then pixels are not repeated and as gamma is increased, higher intensity pixels

are repeated more often. The results in this paper, unless explicitly stated otherwise,

all use γ = 1.

The need for, and the effect of, this intensity correction can be illustrated using the

artificial dataset shown in Figure 2. Without intensity correction (See Figure 2b), the GMM

fit simply tries to get all the non-zero pixel locations correct and the resulting GMM fit is

simply a symmetric ellipse. With low values of γ (See Figure 2c), because there are many

more low-intensity pixels than high-intensity pixels, the GMM fit is dragged only slightly

towards the higher intensity values. On the other hand, when the higher intensity pixels are

heavily emphasized (See Figure 2e), there are many more high-intensity pixels in the fit and

therefore, several components of the GMM are expended towards getting the high-intensity

locations correct. In this paper, we use the moderate value of γ = 1 because it appeared to

work best on real precipitation forecast fields.

e. Error Measures

Given two Gaussian components, one from the forecast field and one from the observed

field, it is possible to compute translation, rotation and scaling errors from the parameters

of the two components (how corresponding Gaussians are identified is described in Section

2f).
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The translation error, etr, is the Euclidean distance between their means:

etr =
√

(µxf − µxo)2 + (µyf − µyo)2 (12)

where the subscripts f and o correspond to the forecast and observed fields respectively.

The rotation error, erot, can be computed from the two covariance matrices since the first

eigen vector of a covariance matrix represents the direction of maximum variance (this is the

key idea underlying Principal Components Analysis, for example). Once the eigen vectors

of the two covariance matrices are computed, the dot product of the eigen vectors yields the

cosine of the angle between them. Hence, the rotation error (in degrees) can be computed

as:

erot =
180

π
cos−1(vf .vo) (13)

where vf and vo are the maximum-variance eigen vectors of the covariance matrices (Σ) of

the forecast and observed fields. As pointed out by Davis et al. (2006), however, one should

be careful about using rotation error on objects that are circular. In the case of a GMM,

the confidence associated with erot is low if σx and σy are nearly equal.

The scaling error, esc can be computed as:

esc =
Afπkf

Aoπko

(14)

so that if esc is less than one, it’s an underforecast and if it is greater than one, it’s an

overforecast.
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f. Finding Corresponding Gaussians

All the error measures in the previous section are defined assuming that one Gaussian

component from each field (forecast and observed) is given. In fact, there will be K Gaussian

components available from each field. Therefore, these error measures are computed for each

pair of Gaussian components (K2 pairs in all) and the best match for each forecast component

is selected by normalizing and weighting the three individual errors to compute an overall

error. We chose the scaling factors and weights arbitrarily:

e = 0.3 ∗ min(
etr

100
, 1) + 0.2 ∗ min(erot, 180 − erot)/90 + 0.5 ∗ (max(esc, 1/esc) − 1) (15)

In practice, they would be chosen based on the resolution of the images and the needs of

the users of the forecast. For example, underforecasts and overforecasts may have different

costs, as could translation errors beyond a certain threshold.

The overall forecast error is defined as the mean of the individual GMM component errors.

Alternately, because the Gaussians are localized, the errors could be used as indicative of

the errors in different regions of the forecast field.

g. Number of Components

The initialization procedure assumed that we needed a GMM consisting of K components.

How do we know the number of components needed in the GMM?

The traditional way to estimate K is to start with 1 model and slowly increase the number

of models. At each K, the log-likelihood obtained from the GMM fit is used to compute an

13



information criterion such as the Bayes Information Criterion (BIC) (Hand et al. 2001):

BIC = 2l(θ) − 6Klog(N) (16)

The optimal value of K is the K at which the information criterion is maximum. In effect, the

fitting is stopped when the number of parameters to represent the model (µx,µy, σx,σy,σxy,π

for each of the K Gaussian components) starts to overwhelm the advantage gained by the

increased likelihood.

We found though, the maximum number of components given by this criterion is too

many for the forecast verification problem. For example, for the image shown in Figure 1, the

number of components required before the BIC stops increasing is on the order of hundreds.

Thus, we subjectively chose the maximum number of components to be 3 for all the cases

considered.

3. Results, Analysis and Conclusions

We computed the GMM on three datasets from a verification methods intercomparison

project (Gilleland et al. 2009; Ahijevych et al. 2009) that was established to improve the

understanding of the characteristics of various model forecast verification methods. The

goal of the intercomparison project was to provide answers to questions such as how differ-

ent verification methods provide information on location errors, intensity errors, structure

errors and model performance at different scales. To enable reasonable comparison, the

verification methods were carried out on synthetic and real fields with known errors. The

methods were also applied to a common dataset used in a subjective model evaluation ex-

14



periment. The results of the GMM approach on the different datasets that were created by

the intercomparison project are presented below.

a. Geometric

This dataset consists of a synthetic object that is subjected to geometric transformations.

We carried out GMM fitting assuming 3 components so as to keep the hand-analysis of GMM

parameters manageable. For consistency, we used the normal intensity correction (γ = 1)

that we employ on real-world datasets.

Even though these choices are non-ideal for this synthetic object, the GMM approach

does extremely well in identifying the translation, rotation and scaling errors. The GMM

fit shown in Figure 3 is a poor approximation to the synthetic object. This is because the

synthetic object is unrealistic in two specific ways. First, the synthetic object has abrupt

transitions between intensity levels whereas Gaussian approximations are better suited to

more gradual varations. Secondly, the intensity (gamma) correction is done based on a

cumulative distribution function. This works well on real-world images but does poorly on

this synthetic image where the distribution function consists of just two values. Indeed, as

shown in Figure 2, it is possible to obtain a better approximation to the synthetic object by

using many more components (to better approximate the high gradients) and a higher value

of γ (to better equalize the sparse intensity histogram).

By referring to Table 1, it may be observed that translation to the right, whether by

50 points as in geom001 or by 125 points as in geom005, is easily inferred by the change

in the longitude direction of the appropriate number of pixels. Translation to the north
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or south can similarly be inferred from changes in µy. Differences in size can be inferred

quantitatively as changes in σx or in the amplitude,Aπk, as in geom004. Both numbers

(
√

2110/128 and 167034/49734) indicate that the region in geom003 is about three times

too big. The wrong orientation in geom004 can be inferred from the changes in σx and σy.

The new object is 4 times too small in the north-south direction and 4 times too large in

the east-west direction. The translation by 125 pixels can be inferred by the change in µx.

Quantitatively, the rotation is captured by the erot of 90 degrees. When the objects become

circular (as in geom003 and geom005), the rotation metric is unreliable but this is to be

expected because the ”orientation” of a circular object is undefined. Thus the GMM is able

to capture the transformations on this synthetic dataset (except for circular objects).

If we were to rank the different synthetic forecasts by the admittedly subjective weighted

error metric of Equation 15, the order is: geom001, geom002, geom004, geom003 and finally

geom005. This is intuitively what one would expect.

b. Perturbed

The ”perturbed” set of cases from the Intercomparison Project (Ahijevych et al. 2009)

consists of observed data from the 2005 NSSL/SPC Spring Experiment described in Kain

et al. (2008). The observed data were subjected to various transformations as shown in

Figure 4. We carried out the fit with 3 Gaussian components, as in the case of the synthetic

cases, primarily to keep the hand-analysis of GMM parameter changes tractable. We used

only the top 10% of pixel values in each of the images to form the GMM fit so as to avoid

contanimation by the extremely large number of low intensity pixels in this real-world image.
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This adaptive threshold was 6.6 mm on the original image and higher, due to movement of

pixels beyond the edge of the domain, for the perturbed images.

Here too, the GMM is able to capture the translations as shown in Table 2 for cases

1-3. Within the limits of round-off error, the differences in µx and µy match up well with

the known translation errors (See also the first two columns in Figure 4). In cases 4 and

5, the translations are larger. While the GMM fits and etr point to the magnitude of the

translation error, the numerical estimates are inexact because many of the pixels that were

in the original fit are now off the edges of the image. The dependence of the GMM fit on

these boundary pixels can be derived analytically and is given by the partial derivative of

the GMM equations with respect to x and y. If pixels in the eastern part of the image are

not included in the GMM fit, for example, the centroid moves to the west by an amount

given by the partial derivative of Equation 6 multiplied by the number of such pixels.

Case 6 involves both translation and an overestimate of precipitation amounts – each

pixel’s value is multiplied by 1.5. This overestimate is captured in the amplitude (Aπk)

of the Gaussian and in the scaling errors (escs). Moreover, the translation effect is mostly

independent of the amplitude effect as can be noticed by comparing the µx and µy here with

those of fake003. The translation error in fake006 is not identical to that of fake003 because

formerly low-intensity pixels around the boundaries of a storm system were included in the

GMM fit once their intensities are multiplied by 1.5.

Finally, fake007 involves both translation and a consistent underestimate of precipita-

tion. This is reported by the GMM as a reduction in the amplitude and in the size (σx is

smaller and σy larger but the net change is towards a smaller size). Note, for comparison,

that fake006 showed an amplitude increase but no increase in size. Thus the GMM is able
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to parsimoniously capture all the transformations on the perturbed dataset. The under-

forecast is captured in esc but because the esc was defined as a ratio, the reported error

(0.67, for example) does not match up with the actual transformation which was a constant

underforecast of 2mm.

Ranking the different perturbed forecasts by the error metric of Equation 15 yields this

order: fake001 (0.02), fake002 (0.04), fake003 (0.23), fake006 (0.31), fake004 (0.33), fake007

(0.42) and finally fake005 (0.44). Ordering forecasts in this manner is subjective as the order

would change depending on the weights assigned to the translation, rotation and scaling

errors and to the maximum tolerable errors in each category.

c. June 1, 2005

The third set of cases we analyzed consists of observed data and model runs from the

2005 NSSL/SPC Spring Experiment described in Kain et al. (2008). The observed data from

June 1, 2005 are compared with 24 hour forecasts of one hour rainfall accumulation carried

out on May 31, 2005. The GMM fits of the data and the model forecasts (from the 2CAPS,

4NCAR and 4NCEP models) are shown in Figure 5. The images cover the lower 48 states

of the United States. The 4NCEP model forecast was produced at the National Centers for

Environmental Prediction (NCEP) using a Weather Research and Forecasting (WRF) model

whose core was a Nonhydrostatic Mesoscale Model (Janjic et al. 2005) with a 4.5km grid

spacing and 35 vertical levels. The 4NCAR model forecast was produced at the National

Center for Atmospheric Research using the Advanced Research WRF (ARW; Skamarock

et al. (2005)) core with a 4km grid spacing and 35 vertical levels. The 2CAPS was produced
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at the Center for Analysis and Prediction of Storms at the University of Oklahoma (also using

the ARW core) with a 2km grid spacing and 51 vertical levels. All three forecast systems

used initial and lateral boundary conditions from the North American Model (Rogers et al.

2009). The observations are from the Stage II rainfall accumulation dataset produced by

NCEP (Baldwin and Mitchell 1998).

The June 1 case consists of three quite different systems: an elongated band stretching

north-south in the middle of the image, somewhat weaker precipitation in the Southeast and

weak, isolated storms in the Northwest. As with the ”fake” cases in the previous section,

we carried out the fits with 3 Gaussian components for tractability and limited the fit to

the top 10% of pixel values in each of the images. The 3-component GMM fit does not

capture these three events. Instead, two of the components correspond to the northern and

southern sections of the elongated band and the south-eastern band. The weak, isolated

cells in the Northwest are ignored in the GMM fit. As pointed out by Wernli et al. (2009),

it would be advantageous to carry out this analysis on smaller domains where only one

type of of meteorological system predominates. It should also be noted, from Figure 1, that

higher order GMM fits do capture all these systems. We chose to use only a 3rd order fit

so as to keep the hand-analysis of component parameters tractable. An automated analysis

employing more components is shown in Figure 6.

The GMM coefficients are shown in Table 3. The GMM coefficients of the 2CAPS forecast

(which is the same as the fake000 field in Table 2) are repeated for convenience.

The easy correspondence of GMM parameters that existed in the geometric and perturbed

cases does not exist in the real model forecasts. Nevertheless, interesting conclusions can be

drawn from the transformations indicated by the changes in the GMM parameters. We’ll
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consider the Gaussian components one-by-one.

For the first Gaussian component (corresponding to the Northcentral part of the image),

all three forecasts are displaced to the north and west. The 2CAPS forecast is the least

displaced – its µx and µy are closest to that of the observation and etr is lowest. The

4NCAR model run underestimates the precipitation; the 2CAPS model run overestimates it

while the 4NCEP gets the intensity of precipitation nearly correct (Aπk of 23002 vs. 22136 or

a esc of 1.04). Examining the elements of the Σxy matrix, the 2CAPS forecast gets the shape

wrong whereas the 4NCAR and 4NCEP forecasts get the extent correct in the north-south

direction (the x direction in our right-handed coordinate system centered at the top-left of

the image) but over-estimate the east-west extent.

For the second Gaussian component (corresponding to the Southcentral part of the im-

age), all three forecasts are displaced to the north, with the 2CAPS forecast again exhibiting

the least displacement. The forecasts are extremely vertical (ratio of σy to σx) whereas the

observation indicates that the field should be more horizontal. The wrong orientation is cap-

tured in erot, although this error might exaggerated because the 3-member GMM fit does not

adequately capture the curvature in the line. In terms of intensity (Aπk or esc), the 2CAPS

is the closest whereas the 4NCAR and 4NCEP forecasts are significant overestimates.

On the third Gaussian component (covering the Southeastern part of the image), the

NCAR and NCEP model forecasts get the intensity and orientation correct but are displaced

to the east. The 4NCEP also exhibits a displacement to the north. In addition, the 4NCEP’s

forecast is overly large in the north-south direction indicating the precipitation, even if correct

in the aggregate, is spread over too large an area.

Overall, the rank of the models, based on the subjective weighting used in Equation 15, is
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2CAPS (0.34), 4NCAR (0.49) and 4NCEP (0.50). At the extremely coarse scale at which the

forecasts have been compared, the 2CAPS forecast exhibits the least translation, orientation

and scaling errors.

If we increase the number of Gaussians, it is possible to perform the comparison at finer

detail. Recall that we used 3 components in this paper only so that we could do a hand-

analysis of the Gaussian components. Since even a 50-component GMM fit takes just 0.05

seconds to carry out, an automated analysis of errors can be carried out by varying the

number of components from one to 50. This is shown in Figure 6. The errors plotted in

that graph are the translation, rotation and scaling errors scaled according to Equation 15

i.e. the rotation error plotted there is:

min(erot, 180 − erot)/90 (17)

so that the errors can be averaged across components and plotted on a consistent (zero to

one) y-axis. Looking at the total error graph at the bottom right of the figure, the relative

rankings of the models are quite constant. The 4NCEP model exhibits the greatest errors

while the 2CAPS one exhibits the least. The 4NCAR model is intermediate between these

two, although at some scales (notably around 15 components), it does better than the 2CAPS

model. These relative rankings are driven most strongly by the translation errors. In terms

of rotation and scaling errors, the three models have comparable performance. It is also clear

that the error measures are quite robust to changes in the number of Gaussian components.
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d. Areas for further exploration

This paper presents a GMM approach to model verification, but is not a full-fledged

verification technique. There are some unresolved questions about the GMM approach that

need to be addressed in order to create a verification technique from the ideas in this paper:

i. Association or Deformation? In this paper, we approximated the observed and the

forecast field by separate GMMs and picked out the correspondence of the parameters

in the two GMMs by looking for the match with the lowest overall error. An alternative

approach that would side-step the entire association problem would be to start the E-M

on the forecast field with the GMM that corresponds to the observed field and observe

how the GMM components get deformed. It is not known which approach is better.

ii. Initialization of EM The EM approach only promises convergence to a local minimum,

not a global minimum. We introduced a bias towards the ”known” form of the so-

lution by organizing pixels into contiguous regions before computing the first E-step.

Exploration into other algorithms for initializing the EM process may prove beneficial.

iii. Low intensity regions Because our GMM formulation was based on likelihood, we em-

phasized higher intensities by repeating the pixels at which higher intensities were

present. This would have the unfortunate side effect of deemphasizing low intensity

and small cells if there is a large, high intensity cell somewhere else. The intensity

correction factor γ might depend on the verification problem.

iv. Error measures Other error measures are possible beyond the three – translation, ro-

tation and scaling – that were defined and employed in this paper. For example, an
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error metric based on size could be defined as:

esize =
σxf ∗ σyf − σxo ∗ σyo

σxo ∗ σyo

(18)

One possible solution to the problem of low intensity regions might be to break up large

spatial areas into smaller areas and then fit GMMs to them. The approach might to be fit

a GMM to the entire image, then to break the image into quartiles and fit a GMM to each

quartile. This process could be repeated as often as needed to create a hierarchical set of

GMMs, each of which could be analyzed to obtain the forecast efficiency at the appropriate

level of detail and over the appropriate spatial area. The drawback to this would be that

the GMM representations would not be tied to storm morphology.

e. Summary

In this paper, we introduced the novel approach of using a Gaussian Mixture Model to

verify model forecasts. We showed that the GMM approach is able to identify translation,

rotation and scaling errors in forecasts. We also identified areas where this approach can be

improved in order to create a robust verification method.
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Table 1. GMM fits on synthetic images from Ahijevych et al. (2009) and the associated
errors. The numbers in bold are referenced in the text. Each row refers to a Gaussian
component.

Data set Description µy µx σ2
y σxy σ2

x Aπk etr erot esc e

geom000 Original 249 203 1720 4 128 49734
249 203 1667 4 127 49734
250 203 1668 9 127 49737

geom001 50 pts. right 249 253 1694 0 129 49731 50 0 1 0.15
250 254 1682 4 121 49741 51 0 1 0.15
250 253 1679 4 131 49732 50 0 1 0.15

geom002 200 pts. right 249 404 1612 4 126 49739 201 0 1 0.3
250 403 1682 4 127 49735 200 0 1 0.3
250 403 1760 0 129 49731 200 0 1 0.3

geom003 125 pts. right, 250 339 1696 9 2110 167034 136 91 3.36 1.68
too big 249 340 1696 13 2048 167018 137 92 3.36 1.67

250 341 1647 4 2021 167032 138 91 3.36 1.68
geom004 125 pts. right 249 341 104 1 2046 49736 138 90 1 0.5

wrong orientation 249 340 101 1 2027 49729 137 90 1 0.5
250 339 105 2 2120 49740 136 90 1 0.5

geom005 125 pts. right, 249 355 1678 17 8271 323126 152 90 6.5 3.25
huge 250 356 1688 34 8203 323125 153 90 6.5 3.25

250 356 1668 16 8265 323121 153 90 6.5 3.25
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Table 2. GMM fits on perturbed images from Ahijevych et al. (2009) and the errors
associated with the forecasts. The numbers in bold are referenced in the text.

Data set Description µy µx σ2
y σxy σ2

x Aπk etr erot esc e

fake000 Original 176 289 1305 743 1328 26437
309 252 1272 482 665 26437
379 407 1456 3919 20490 26437

fake001 3 pts. right 181 292 1306 743 1328 26437 6 0 1 0.02
5 pts. down 314 255 1270 490 675 26437 6 0 1 0.02

384 410 1456 3918 20424 26437 6 0 1 0.02
fake002 6 pts. right 186 295 1307 744 1329 26437 12 0 1 0.04

10 pts. down 319 258 1269 496 675 26437 12 0 1 0.04
389 414 1472 3928 20348 26437 12 0 1 0.04

fake003 12 pts. right 195 299 1206 840 1133 27101 21 178 1.03 0.08
20 pts. down 340 261 774 578 767 34201 32 16 1.29 0.28

416 495 1051 1900 10252 17843 95 0 0.67 0.53
fake004 24 pts. right 212 311 1059 813 1111 26527 42 0 1 0.13

40 pts. down 354 276 1239 802 837 33773 51 9 1.28 0.31
432 483 1347 3110 13743 17566 93 2 0.66 0.54

contd...
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fake005 48 pts. right 250 335 968 801 1121 25113 87 2 0.95 0.29
80 pts. down 387 304 1772 1052 934 33256 94 5 1.26 0.42

452 447 1405 4659 20003 15666 83 2 0.59 0.6
fake006 12 pts. right 192 298 1096 859 1198 33338 18 1 1.26 0.19

20 pts. down 335 263 1178 773 829 42294 28 10 1.6 0.41
times 1.5 412 483 1264 2538 12634 22304 83 1 0.84 0.34

fake007 12pts. right 222 306 2355 194 459 17815 49 140 0.67 0.48
20 pts. down 345 258 79 162 486 20620 36 138 0.78 0.34
minus 2 mm 409 431 755 2884 20770 15932 38 3 0.6 0.45
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Table 3. GMM fits on observed and model forecasts from Kain et al. (2008) and the errors
associated with the model forecasts.

Description µy µx σ2
y σxy σ2

x Aπk etr erot esc e

Observed 193 301 3546 841 936 22136
350 264 684 1218 7508 22616
383 309 921 2032 22181 20061

2CAPS forecast 176 289 1305 743 1328 26437 21 151 1.19 0.22
309 252 1272 482 665 26437 43 129 1.17 0.33
379 407 1456 3919 20490 26437 98 6 1.32 0.47

4NCAR forecast 159 260 3134 2344 7636 16464 53 129 0.74 0.44
277 264 3369 1607 932 39139 73 126 1.73 0.7
379 461 1729 2840 14879 21068 152 6 1.05 0.34

4NCEP forecast 168 247 3518 747 6888 23002 60 118 1.04 0.34
278 258 3153 906 484 43675 72 117 1.93 0.82
405 416 3920 6740 24879 20010 109 11 1 0.33

31



List of Figures

1 Fitting a Gaussian Mixture Model to an image (a) Image being fitted: 24-hour

forecast of one hour rainfall amount on May 31, 2005 from Kain et al. (2008).

(b) Image recreated from a GMM with 5 component Gaussians. (c) With 10

Gaussians (d) With 20 Gaussians (e) With 50 Gaussians (f) Likelihood of the

fit as the number of components is increased 34

2 Without intensity correction, the GMM will fit only the shape, ignoring the

pixel values. (a) Image being fitted: Synthetic image from Gilleland et al.

(2009). (b) Image recreated from a GMM with 10 component Gaussians

but without any intensity correction. (c) Same as b, but with an intensity

correction of γ = 0.5 (d) γ = 1 (e) γ = 3 (f) γ = 5 35

3 Top row: Synthetic images from Ahijevych et al. (2009). Second row: GMM

with 3 components. 36

4 Top row: Perturbed images from Ahijevych et al. (2009). Second row: GMM

with 3 components. 37

5 Top row: Observations on June 1, 2005 and 24-hour model forecasts of one

hour rainfall amount on May 31, 2005. The 2CAPS forecast field is shown in

Figure 4a. Second row: GMM with 3 components. 38

32



6 Translation, rotation and scaling errors for 24-hour model forecasts of precip-

itation accumulation on May 31, 2005 indicate that the 2CAPS model run

exhibits the least error and that the NCAR run is close to it in terms of per-

formance, regardless of the number of components used in the GMM fit. The

forecast fields themselves are shown in Figure 5. 39

33



a b c

d e f

Fig. 1. Fitting a Gaussian Mixture Model to an image (a) Image being fitted: 24-hour
forecast of one hour rainfall amount on May 31, 2005 from Kain et al. (2008). (b) Image
recreated from a GMM with 5 component Gaussians. (c) With 10 Gaussians (d) With 20
Gaussians (e) With 50 Gaussians (f) Likelihood of the fit as the number of components is
increased
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a b c

d e f

Fig. 2. Without intensity correction, the GMM will fit only the shape, ignoring the pixel
values. (a) Image being fitted: Synthetic image from Gilleland et al. (2009). (b) Image
recreated from a GMM with 10 component Gaussians but without any intensity correction.
(c) Same as b, but with an intensity correction of γ = 0.5 (d) γ = 1 (e) γ = 3 (f) γ = 5
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geom000 geom003 geom004

Fig. 3. Top row: Synthetic images from Ahijevych et al. (2009). Second row: GMM with
3 components.

36



fake000 fake003 fake007

Fig. 4. Top row: Perturbed images from Ahijevych et al. (2009). Second row: GMM with
3 components.
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Observed 4NCAR 4NCEP

Fig. 5. Top row: Observations on June 1, 2005 and 24-hour model forecasts of one hour
rainfall amount on May 31, 2005. The 2CAPS forecast field is shown in Figure 4a. Second
row: GMM with 3 components.
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Fig. 6. Translation, rotation and scaling errors for 24-hour model forecasts of precipitation
accumulation on May 31, 2005 indicate that the 2CAPS model run exhibits the least error
and that the NCAR run is close to it in terms of performance, regardless of the number of
components used in the GMM fit. The forecast fields themselves are shown in Figure 5.
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