
Generated using version 3.0 of the official AMS LATEX template

Quality Control of Accumulated Fields By Applying1

Spatial and Temporal Constraints2

Valliappa Lakshmanan1,2, Madison Miller1,3, Travis Smith1,2∗
3

∗Corresponding author: V Lakshmanan, 120 David L. Boren Blvd, Norman OK 73072; lakshman@ou.edu

1Cooperative Institutute of Mesoscale Meteorological Studies, University of Oklahoma; 2National Oceanic

and Atmospheric Administration / National Severe Storms Laboratory; 3 School of Meteorology, University

of Oklahoma

1



ABSTRACT4

Accumulating gridded fields over time greatly magnifies the impact of impulse noise in the5

individual grids. A quality control method that takes advantage of spatial and temporal6

coherence can reduce the impact of such noise in accumulation grids. Such a method can7

be implemented using the image processing techniques of hysteresis and multiple hypothesis8

tracking (MHT). These steps are described in this paper and the method is applied to9

simulated data to quantify the improvements and explain the effect of various parameters.10

Finally, the quality control technique is applied to some illustrative real-world datasets.11

1. Motivation12

Time accumulation of gridded fields is a common step in a variety of meterological appli-13

cations. For example, precipitation totals are obtained from instantaneous rain-rates derived14

from measured quantities such as infrared temperature or radar reflectivity. “Tracks” of se-15

vere weather phenomena such as hail or low-level circulations are created by accumulating16

instantaneous calculations of the size of hail or the magnitude of shear over time.17

Suppose a pixel at the location (x, y) experiences hail of magnitude h(x, y, t) at time t.18

Then, the “hail track” ht at the pixel over the time period (t− T, t) is given by:19

htT (x, y, t) = max
tkε(t−T,t)

h(x, y, tk) (1)20

In other words, the hail track at any location over a time period is the maximum hailfall at21

the location over the time period (See Figure 1b).22

Accumulating gridded fields over time greatly magnifies the impact of noise in the indi-23
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vidual grids. Even if a spurious value exists at only one time-step, the accumulation product24

will show its effect. Finally, simply as a demonstration, MHT-QC is applied to hail, shear25

and precipitation accumulation grids. Qualitatively, it is shown that the results are better –26

for a more detailed analysis of the effects of MHT-QC and other QC methods on a real data27

set, readers are directed to Miller et al. (2012).28

If one were to create a long-term track from N grids, and a given pixel has a likelihood p29

of having an abnormally high value at any time step, then the likelihood of the pixel having30

an abnormally high accumulation value is 1− (1− p)N . This is because the likelihood of the31

pixel being “good” at any time step is (1 − p) and all the time steps need to be good for32

the pixel to be unaffected. The likelihood of all the timesteps being good, assuming that the33

timesteps are independent, is (1 − p)N . To put this in perspective, consider the error rate34

if one were to create a 24-hour hail track from 5-minute imagery. Even if p were to be as35

low as 0.001, the likelihood of any pixel in the 24-hour accumulation being affected is 0.76.36

On average, then, 76% of pixels in the final accumulation will have abnormally high values37

when only 0.1% of the pixels in any individual frame have such an abnormally high value.38

The quality control of accumulation fields, therefore, requires quality control that is more39

effective than techniques that apply QC to the component frames. It is necessary to apply40

quality control to the accumulation product in addition to the quality control of individual41

frames.42

Precipitation totals are not affected as dramatically as hail tracks because the value at43

a single time step contributes only a small amount to the total. The related calculations44

become more involved to carry out in a close form since the noise probability is a function45

of the noise threshold which itself varies with the accumulation interval. Thus, unlike with46
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the maximum operator, one needs assumptions on the complete error distribution. In fact,47

if the precipitation error is distributed symmetrically about zero, the accumulation error can48

reflect a smaller bias than the instantaneous error. For simplicity in depiction of the results,49

therefore, we will employ the maximum as our accumulation operation of choice. However,50

the improvements in accumulation techniques we describe in this paper are useful even if the51

accumulation operator is an average or a summation. The degree to which they are useful52

depends on the actual error distribution.53

The quality control method described in this paper was developed to carry out quality54

control of long-term accumulations of radar-derived azimuthal shear. Azimuthal shear, being55

a derivative of velocity, is a very noisy field and very susceptible to spurious values at56

individual time steps. Accumulations of azimuthal shear, therefore, are severely impacted57

by noise. For details on the application of the quality control method to azimuthal shear58

accumulations, called “rotation tracks”, please see Miller et al. (2012).59

Even though accumulation fields are affected to a greater extent than the individual com-60

ponents, quality control of accumulation products has typically focused only on improving61

the quality of the individual grids. For example, Grecu and Krajewski (2000) developed a62

neural network to remove anamalous propagation and ground clutter from rain rate prod-63

ucts, but did not describe any methods to improve the quality of the accumulation itself.64

Similarly, the operational stages of precipitation products (rain gage, radar, blended, etc.)65

distributed by the National Weather Service do not involve quality control of the accumula-66

tion product beyond the quality control applied to the individual rain rate grids and some67

simple thresholding of low accumulation totals.68

Yet, it stands to reason that in meteorological fields that are being accumulated, tem-69
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poral continuity can be profitably employed – echoes, hail estimates and high rain rates70

that appear at only one time step are unlikely to be legitimate and can be removed in the71

accumulation. This does rely on the spatial and temporal resolutoin at which these fields are72

being considered, so care should be taken that temporal continuity is a valid assumption to73

make. This paper describes the use of spatial and temporal association (spatial within each74

time step and temporal across time steps) to improve the quality of accumulation products.75

There are two key insights that make the techniques adopted in this paper relevant to76

the problem of QCing accumulation fields. One is that in accumulation grids, temporal77

association does not need to be strictly causal. A causal system is one where results can78

be available in real-time, i.e., without having to use input data from the future. In an79

accumulation product that consists of N frames, it is possible for the temporal association to80

look ahead L frames and still remain causal as long as the look ahead is limited to the first81

N − L frames. In other words, when the accumulation is being generated in real-time, the82

quality control is applied in a lagging sense – temporal continuity measures can be employed83

to remove spurious echoes in the first N−L frames whereas the last L frames will suffer from84

noise that could not be removed from the individual frames. Thus, one can obtain improved85

quality for the majority of the frames while the product remains up-to-date.86

The second insight is that temporal association in a non-causal setting can be performed87

in a more sophisticated manner than real-time storm tracking algorithms. In real-time storm88

tracking algorithms such as Johnson et al. (1998); Dixon and Wiener (1993); Lakshmanan89

and Smith (2010), the id assigned to storms is important because the id is used to examine90

long-term trends and is presented to human users of the system. If the ids are constrained91

to not change over time, one can not retrospectively change object associations. However,92
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when temporal association is employed purely for quality control purposes, the track itself is93

irrelevant. Object associations at previous frames can be freely changed without any unto-94

ward effects. Thus, rather than a single set of tracks, one can maintain multiple hypotheses,95

i.e., multiple sets of tracks and keep around echoes that are temporally correlated in any of96

these sets. Therefore, it is not neccessary for an object to be the “best” match to an object97

at the previous time step for it to be retained – it merely has to be one of the “K” best98

matches (in a global sense).99

Multiple Hypothesis Tracking (MHT; Reid (1979)) is a well-known technique in video100

processing and missile tracking. In meteorology, it was employed by Root et al. (2012)101

to track storms in simulations of a fast scanning radar. However, because MHT breaks102

causality, and because storms typically last only a few time steps, it has not been employed103

in real-time storm tracking algorithms. As far as we know, this is the first time that MHT104

has been used in meteorology or related disciplines for quality control. Because MHT and105

the two algorithms that underpin MHT will probably be new to most readers of this paper,106

they will be explained in detail in Section 2. However, proofs of the mathematical theorems107

and derivations of the formulae will not be presented. Readers interested in mathematical108

proofs are directed to Nering and Tucker (1993); Reid (1979); Cox and Hingorani (1996);109

Bourgeois and Lassalle (1971); Murty (1968) and to the citations therein.110

The rest of this paper is organized as follows. The quality control technique is described in111

Section 2. Input time steps are simulated and the improvement in quality of the accumulation112

product quantified in Section 3a. The technique is demonstrated on some real data in Section113

3b.114
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2. Spatial and Temporal Association115

The underlying assumption behind the quality control presented in this paper is that116

noisy observations tend to be “spiky” (a narrow peak) in space and/or time. Noise, we117

assume, is spatially smaller, and/or more sporadic than real signal. Of course, not all noise118

behaves this way. So, the technique described in this paper will remove only noise that119

matches these characteristics. It will also erroneously remove any true observations that120

are small or sporadic. Nevertheless, noise in many remotely observed fields does meet these121

characteristics and can be effectively removed.122

There are two criteria that observations have to meet in order to be retained in the123

accumulation field: the observations need to be spatially and temporally coherent.124

a. Spatial coherence125

The first constraint that can be placed on pixels that will contribute to the accumulated126

field is that these pixels are part of valid objects, i.e., that they belong to spatially coherent127

entities. Grid points (“pixels”) in the individual spatial grids are first grouped into “objects”128

and these objects are associated across time. Objects that are either too small or not part of129

a long enough track are assumed to be noise and pruned. Accumulation is carried out only130

on those pixels that belong to valid objects.131

Pixels are grouped into objects based on the data values of the pixels. Such grouping132

can not be based simply on thresholding the grid because selecting this threshold can be133

problematic. If the selected threshold is too high, the object will be missed in the early134

stages of its growth and in the late stages of its decay. On the other hand, if one selects a135
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low threshold so as to capture the entire lifetime of an object, it is likely that one starts to136

include noise (which is assumed to be weaker in intensity than valid objects). Lakshmanan137

et al. (2009) discuss these issues in greater detail and suggest the use of the Watershed138

algorithm (Beucher 1982) suitably modified to isolate storm cells. However, the modifications139

result in only the cores of storms being isolated and therefore, the enhanced watershed140

algorithm approach of Lakshmanan et al. (2009) can not be be used when accumulating fields141

like precipitation where one requires the entirety of the object. In this paper, we suggest142

the use of hysteresis to mitigate threshold selection problems while not being subject to size143

constraints.144

Hysteresis as applied to object identification is simply the use of two thresholds. An object145

is defined to consist of a group of contiguous pixels with data values greater than T1 that are146

connected to at least one pixel with a data value greater than T2 where T2 > T1. Hysteresis147

works well at identifying objects as long as the objects are continuous in space and can be148

differentiated from their surroundings based on their data values. Object identification using149

hysteresis is commonly implemented using a recursive image processing algorithm known as150

region growing (Lakshmanan 2012). If the noise characteristics are such that individual pixels151

above T2 are relatively likely, the input field can first be smoothed by a speckle-removing152

filter such as a median filter before object identification is carried out. Once objects have153

been identified, they can be classified as either noise or valid data based on their size.154
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b. Temporal coherence155

The second constraint that can be placed on pixels that will contribute to the accumulated156

field is that the objects that these pixels are part of are temporally coherent, i.e., that they157

are long-lived. The length of time that the object is required to “live” is, of course, dependent158

on the data being accumulated and the phenomena being observed. If one would accept any159

object that occurs in any two consecutive frames, this requires that an object identified at160

a time frame t0 has to be associated with an object identified either at time frame t1 or at161

time frame t−1. Because this is not causal, the accumulation grid will have to lag real-time162

by one time frame. If it is important that the accumulation grid be produced in real-time,163

based on the most current data, the very last frame of the accumulation will have to retain164

unassociated objects but all the previous frames can be quality controlled based on temporal165

coherence.166

Given an object identification technique and a cost function for associating objects, it is167

possible to determine the optimal association between objects across time. It should be clear,168

then, that the performance of the QC method described in this paper depends quite heavily169

on how well objects are identified, represented and associated across time. The interested170

reader is directed to Lakshmanan et al. (2009) for a discussion on the impact of thresholds171

and smoothing on object identification, to Lakshmanan and Smith (2009) for discussions of172

object representation and attribute extraction, and to Lakshmanan and Smith (2010) for173

comparisions of different ways (including the use of cost functions) of associating objects.174
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1) Hungarian Method175

The Hungarian method is an algorithm to find the best way to match each item in176

a set of items to an item in another set of items, where each match carries with a cost, a177

problem known in linear optimization as the assignment problem. In meteorology, it has been178

successfully used for storm tracking (Dixon and Wiener 1993). Given a set of objects at time179

t−1 and a set of objects at time t0, the cost of assigning any object in t0 to an object in t−1 is180

computed. The cost function can be as simple as the Euclidean distance between the object181

centroids or a complex, domain-specific function that incorporates conservation of physical182

properties. The result is a cost matrix where the rows correspond to objects at t0 and the183

columns to objects at t−1. Munkres (1957) described a pen-and-paper algorithm to reduce184

the matrix to a set of “starred” entries which form the optimal assignment. The algorithm185

was modified by Bourgeois and Lassalle (1971) for rectangular matrices so that the number186

of objects at the two time steps can be different and it is the description of Bourgeois and187

Lassalle (1971) that is summarized below. For a mathematical proof that this method works,188

readers are directed to Nering and Tucker (1993) or any other text on linear programming.189

In cases where there are multiple possible solutions to the assignment problem, the Bourgeois190

and Lassalle (1971) algorithm provides one of those solutions. For further implementation191

details on the algorithm, including how to adapt the pen-and-paper description to something192

amenable to a computer program, readers are directed to Lakshmanan (2012).193

Given a cost matrix that represents the distance between every object at time t0 to every194

object at time t−1, the Hungarian method as adapted by Bourgeois and Lassalle (1971) for195

rectangular matrices consists of these steps:196

9



i. For each row of the cost matrix, find the smallest element and subtract it from every197

element in its row.198

ii. For every zero in the matrix that results from the previous step, if there is no starred199

zero in its row or column, star this zero. Repeat for each element in the matrix.200

iii. Cover each column containing a starred zero. If all the columns are covered, the starred201

zeros now describe the final optimal assignment.202

iv. For every noncovered zero, prime it and check if there is a starred zero in the row203

containing this newly primed zero. If not, move on to Step 5. If there is a starred zero204

Z in this row, however, cover this row and uncover the column containing Z. Finally,205

move on to Step 6.206

v. Construct a sequence of alternating primed and starred zeros as follows. Let Z0 repre-207

sent the uncovered primed zero found in the previous step. Let Z1 denote the starred208

zero in Z0’s column (if any). Let Z2 denote the primed zero in Z1’s row. Continue209

until the sequence terminates at a primed zero that has no starred zero in its column.210

Unstar each starred zero of the sequence, star each primed zero of the sequence, erase211

all primes and uncover every line in the matrix. Return to Step 3.212

vi. Find the smallest uncovered value in the matrix. Add this value to every element213

of each covered row, and subtract it from every element of each uncovered column.214

Return to Step 4 without altering any stars, primes, or covered lines.215

In practice, it is necessary to specify an upper bound for the cost function so that objects216

that are too far apart are not assigned to each other. The time complexity of the Hungarian217
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method is O(N3) where N is the number of rows (or columns, which are assumed to be218

similar in order of magnitude).219

2) K-best Solution220

The Hungarian method provides the optimal assignment for every object in the current221

frame to every object in the previous frame. While this is desirable for tracking, this is222

not quite what is needed for quality control. We would like to retain any object that is223

reasonably likely to be associated with an object in the previous frame, especially because224

the optimal assignment based on two frames may not be the best assignment once we receive225

a third frame (See Figure 2).226

In order to accomodate this desire to maintain multiple hypotheses of tracks, it is nec-227

essary to obtain not just the best assignment of objects between two frames but a few more228

reasonable assignments.229

Murty (1968) proved the correctness of an algorithm to find the k + 1th best assign-230

ment given the kth best assignment and whose complexity is linear in k. Starting with the231

Hungarian method (which yields the best set of assignments), one can find the second-best232

solution and starting with the second-best, the third-best and so on.233

Although the algorithm was described as a way to find the K best solutions, it is an iter-234

ative algorithm and can, therefore, be used in a manner such that the number of hypotheses235

K is dynamic and not fixed. For example, one can stop looking for further assignments as236

soon as they are worse than, say, 110% of the optimal cost.237

The K-best algorithm due to Murty (1968) is as follows. Suppose the kth best set of238
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assignments, Ŝk, is determined to consist of < x, y > where the xth row of the cost matrix239

is assigned to the yth column. To obtain the (k + 1)th best set of assignments from the cost240

matrix that results after the kth best set is found:241

i. For each assignment < x, y > in Ŝk:242

(a) Delete < x, y > in the solution Ŝk. This can be done by setting the cost of243

< x, y > to be above the upper bound for the cost function so that it will never244

be part of an optimal assignment.245

(b) Apply the Hungarian method to the resulting cost matrix and find a candidate246

optimal solution Sk+1.247

ii. Choose the Sk+1 that has the lowest cost. This is Ŝk+1, the (k + 1)th best assignment.248

iii. Delete every x̂ and ŷ entry in the cost matrix, retaining only < x̂, ŷ >. where < x̂, ŷ >249

was the < x, y > whose deletion resulted in Ŝk+1.250

Murty’s K-best algorithm is based on partitioning the solution space, and therefore, the251

time complexity of the algorithm improves with increasing k, i.e., the third-best solution is252

found faster than the second-best and the fourth faster than the third. However, as a broad253

generalization, one can state that the complexity of the K-best algorithm is kN , and this254

combined with the complexity of the Hungarian method makes the entire process a O(N4)255

operation. Recall, however, that N here is not the number of pixels in the grid but is only256

the number of objects in the grid. Therefore, the process of maintaining multiple possibilities257

is quite feasible computationally.258
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3) Multiple Hypothesis Tracking259

Given a set of spatial grids over time, the K-best algorithm will lead to a combinatorial260

explosion – if there are K solutions that we wish to consider between every pair of time261

steps, then if there are N time steps, there are KN−1 solutions that one needs to consider262

(see Figure 3).263

Reid (1979) addressed the issue of combinatorial explosion by pruning the set of hypothe-264

ses at each stage so that the K2 hypotheses from three successive frames get immediately265

pruned to the K best. Thus, for example, the four hypotheses in the bottom half of Fig-266

ure 3 would be pruned to just two and it is these two that would be used to find the best267

assignments when the fourth time frame is being processed. A framework that does this268

sort of pruning is referred to as a Multiple Hypothesis Tracking (MHT) framework. How-269

ever, the brute-force method of finding all K2 solutions and then pruning them to K is270

computationally inefficient especially because the Hungarian method is O(N3).271

Cox and Hingorani (1996) pointed out that Murty’s K-best algorithm can be generalized272

to deal with triples < x, y, l > where l is the time frame of the assignment. Murty’s algorithm273

can therefore be used to maintain the set of hypotheses at a manageable number. Using274

Murty’s method in combination with a termination condition that involves proceeding no275

more than a certain fraction above the optimal cost function, it is often unnecessary to276

actually find K new solutions at each time step. Cox and Hingorani (1996) also suggested277

the use of a “N-scan-back” algorithm such that ambiguities at time k are resolved by time278

k + N , so that one does not need to maintain multiple hypotheses for frames that are more279

than N scans old.280
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When used together, the Hungarian method, the triple-form of Murty’s K-best algorithm281

and N-scan back algorithm (hereafter simply termed “MHT”) can be used to impose a282

non-causal, fault-tolerant temporal coherence check on accumulation grids. This will be283

demonstrated in Section 3.284

4) Splits and Mergers285

Before we proceed to demonstrating the results of the spatial and temporal coherence286

checks, we’d like to address a question that might have arisen in the minds of many readers.287

How are splits and mergers handled in this method?288

None of the techniques described above – the Hungarian method, Murty’s algorithm289

or N-scan-back – deals explicitly with splits and mergers. However, this does not matter290

because our use of MHT is to apply temporal coherence checks, and both sides of a split or291

merger should remain amongst the K-best solutions and will not get pruned (see Figure 4).292

As time goes on, both sides of the split will normally attain temporal coherence and be293

retained in the accumulation grid regardless of which side of the split is chosen at the point294

of the “N-scan-back” decision as the final one.295

3. Results and Discussion296

In order to demonstrate the impact of the spatial and temporal coherence checks on an297

accumulation grid, we simulated a set of input grids and created an accumulation product298

as the maximum of the input grids over the entire length of the simulation. To the input299
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grids, simulated noise was added and the MHT-QC method applied to try and remove the300

noise. The QCed field is compared against the field that would have been obtained had the301

simulated noise not been added. By comparing against the “true” accumulation, it is possible302

to quantify the noise pixels and real data removed. Finally, simply as a demonstration, MHT-303

QC is applied to hail, shear and precipitation accumulation grids. Qualitatively, it is shown304

that the results are better – for a more detailed analysis of the effects of MHT-QC and other305

QC methods on a real data set, readers are directed to Miller et al. (2012).306

a. Simulation307

The simulation was carried out as follows. One hundred time frames of a spatial grid were308

simulated and accumulated using the maximum operator in three ways: (1) raw, without any309

quality control (2) applying only the spatial coherence criterion based on a minimum size for310

the objects and (3) applying both the spatial coherence criterion and a temporal coherence311

criterion using MHT. In the individual spatial grids, true objects and noisy objects were312

simulated and added. The resulting accumulations were compared against a hypothetical313

method that would retain only the true objects in the accumulation.314

The individual spatial grids were simulated to have a size of 500x500 and in these grids,315

true objects and noise were placed randomly. The true objects were simulated to last 10316

+/- 5 frames and move at a speed of 10 +/- 5 pixels per time frame, i.e., the lifetime of the317

objects was chosen from a Normal distribution with mean of 10 and standard deviation of318

5. The peak intensity of the objects was simulated to be 60 +/- 15 (with the data range319

clamped between 0 and 100) with the peak intensity being reached at the half-life of the320
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objects. In other words, the objects intensified over the first half of their lifetime and decayed321

over the second half of their lifetime. Spatially, the intensity of the objects was simulated to322

fall off exponentially with distance from the center of the object. Because the intensity of323

the object changes over its life time, its size also changes. At every time step, 5 true objects324

were simulated. The probability of noise at any pixel in the grid at any time step was chosen325

to be 0.00001 and noise objects were simulated to have half the intensity of real objects, i.e.326

their intensity was chosen from a Normal distribution of 30 +/- 7.5. The noise objects were327

not persistent over time and did not, therefore, exhibit any temporal variation in intensity.328

In addition to randomly placing noise objects, we also simulated noise close to real objects329

so as to cause confusion during tracking. The movement of true objects was also simulated330

to exhibit a strong turn once during their life time and at the time of the turn, spurious331

objects were placed all around the true object.332

Two successive time frames of the simulated input grids are shown in the top row of333

Figure 5. Some of the objects in the grids are real and the others are noise. Note that334

the spurious objects surrounding the real object make it difficult to track the real object335

(based on center position alone). An accumulation of the simulated input grids without any336

quality control is shown in Figure 5c. An accumulation using only the true objects is shown337

in Figure 5d. This is the result of an ideal QC method. Quality control using spatial and338

temporal criteria is shown in Figure 5e. A post-processed clean copy of the same frame as339

Figure 5b where small or unassociated objects have been removed is shown in Figure 5f. The340

spatial coherence criterion here does not remove much noise because the threshold on size is341

set very low, so that most of the noise objects also qualify. Using the same size criterion, but342

adding a temporal continuity criterion of 3 time frames in one of the five best hypotheses343
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results in the accumulated field shown in Figure 5f. Because the spatial criterion did not344

result in any improvement, all the improvement here is due to the MHT.345

The following parameters were varied in order to examine their effect on the MHT-QC346

method:347

i. The minimum size threshold before an object was accepted as a valid object was varied348

within the range 1 to 100.349

ii. The minimum temporal length threshold was varied from 1 to 8. Because the average350

lifetime of the objects is 10 frames, the larger threshold should result in more true351

objects being removed.352

iii. The number of hypotheses was varied from 1 to 10. With only one hypotheses, MHT353

reduces to the Hungarian method.354

The errors and skill scores are computed by comparing the accumulation field to the355

result of the ideal accumulation where none of the true objects are removed and all the noise356

is eliminated. This comparision is done pixel-wise.357

At a size threshold of 1, none of the objects are removed whereas at 100, nearly all the358

noise objects are removed, but so are most of the true objects (See Figure 6a,b). Therefore,359

one can see the variation in the impact of the spatial coherence criterion as the size threshold360

is increased. When the size threshold is very low, there is no decrease in error (i.e. the spatial361

coherence criterion has no impact), but as it is increased, the error initially decreases (as362

noise is removed with little impact on true objects) and then starts to increase as good363

objects also start to get impacted. The probability of detection (of true objects) decreases364

as the size threshold is increased, but the likelihood that a noise object is falsely retained365
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also decreases. Because of the countervailing balance of these two effects, the mean square366

error (MSE) decreases as the size threshold is increased, but only to a certain point after367

which it starts to increase. The graphs in Figure 6a,b are generated with neither simulation368

of spurious objects nor pruning based on temporal coherence.369

Because none of the objects are removed due to the spatial constraint when the size370

threshold is 1 pixel, this number can be used to validate the impact of employing just371

temporal coherence (See Figure 6c). Shown are the mean square errors (MSEs) for different372

track length thresholds and different numbers of hypotheses. The graph for a track length373

threshold of 2 (marked as “len=2” in the graph) indicates that an object is presumed valid374

if it is associated with an object in an earlier frame or an object in a later frame. In general,375

the MSE is reduced by increasing the number of hypotheses, but only up to a point. At376

that point, due to the incorporation of noise in the simulation, spurious objects start being377

part of some hypothesis, causing the MSE to start increasing again. It is clear that, for378

the simulation, the ideal value for the number of hypotheses is 4. This corresponds to the379

number of spurious objects along the direction of movement. Thus, in a realistic situation,380

one needs to choose as the number of hypotheses the number of “ties” one would reasonably381

expect to resolve at any individual time step.382

The result of applying the MHT QC technique to the simulated inputs is shown in383

Figure 5f. The image corresponds to the best set of parameters: a size threshold of 10, a384

track length threshold of 3 and using 4 hypotheses.385
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b. Real Data386

The MHT-based QC algorithm described in this paper was developed in order to apply387

quality control in the creation of NSSL’s “rotation tracks” product. The full quality control388

of the rotation tracks product, of which MHT-based QC was just one step, is described389

by Miller et al. (2012). One problem with applying this QC technique to rotation tracks was390

the inability to quantify its effect using measures such as MSE. This is because mesocylones391

are a radar-inferred phenomenon, i.e., there is no ground truth of mesocylones. Consequently,392

there is no easy way to identify whether any strong shear was incorrectly removed by the393

algorithm or whether any spurious shear was incorrectly retained. In the absence of an394

objective way to create a contigency matrix, quantification of the skill of the MHT-based395

QC is not possible. Therefore, in this paper, in an effort to quantity the effect of the MHT396

QC technique, data were simulated, noise added and the QC technique applied and compared397

against the simulated data before noise was added. This allowed us to explore the effect of398

the various parameters on the MHTQC.399

In order to illustrate the MHT QC algorithm’s effect on real data, and its applicability400

beyond rotation tracks, it was applied to several real-world datasets. The examples shown401

in this section are merely illustrative, as we did not tune the various parameters. Further402

research is required to choose the best hysteresis thresholds and MHT settings for specific403

datasets and applications (see Figures 7, 8 and 9).404

An example of a 3-hour hail accumulation from 1 km grids of Maximum Expected Size of405

Hail (MESH) grids created every 5 minutes is shown in Figure 7. The spatial constraint was406

to apply hysteresis, defining valid clusters as contiguous pixels above 5 mm connected to a407
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pixel with hail size of 8 mm and with a minimum size of 15 km2. The temporal constraint408

was implemented using MHT with 5 hypotheses, looking ahead one frame, coasting two409

frames if necessary, and with clusters associated only if the centroids are within 42 km2 of410

each other.411

Note that there are several updrafts in the southeast quadrant of the domain in Figure 7a,412

which depicts data from Oklahoma on 16 July 2009. However, only one of those updrafts413

actually persists (Figure 7b) and is used in the accumulation. However, the movement of the414

storm causes even the location of the short-lived updraft to later get filled. Several short-415

lived features in the southwest of the domain (one of which is shown circled in Figure 7c) are416

also removed in the three-hour accumulation. By comparing against hail reports collected417

by telephone surveys (Ortega et al. 2009), it was verified that the removed echoes were really418

spurious and that suppressing these in the final accumulation was correct.419

A similar process is at work in Figure 8 which shows accumulation of low-level shear420

over time. Circulations which are not persistent over time are removed and not used in the421

accumulation. The resulting QCed rotation tracks are less noisy than simply accumulating422

the raw azimuthal shear. Figure 8 demonstrates, through the use of a post-event damage423

survey, that signatures corresponding to real tornadoes were not removed. It should be424

noted that not all non-tornadic circulations have been removed; the aim of the QC technique425

was simply to remove temporally incoherent circulations and in that, the QC method was426

successful. The application of this technique to the quality control of rotation tracks is427

described in detail by Miller et al. (2012).428

Finally, the MHT-based QC technique of this paper is illustrated on precipitation fields in429

Figure 9. The one-hour accumulation from radar-derived precipitation grids at a resolution of430
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1 km × 1km × 5 minutes was quality controlled by applying spatial and temporal constraints.431

The spatial constraint was to define valid clusters as contiguous pixels with rain rates above432

0.8 mm/hr, connected to a pixel with rain rate above 1 mm/hr and with a minimum size of433

100 km2. The temporal constraint was applied using MHT, 10 hypotheses, looking ahead one434

frame, coasting a maximum of one frame, and associating clusters only if their centroids were435

within 22 km of each other. The impact of temporal coherence checks on precipitation is quite436

minimal because the value of the accumulation grid is an average over time, thus lowering the437

impact of temporally incoherent noise. There are, however, differences in the precipitation438

accumulation fields having to do with spatial coherence checks (such as the radial spike in the439

southeast quadrant and the low precipitation totals in the east-central region). Comparing440

the rainfall at the nearest mesonet station indicates that these precipitation objects have441

been correctly removed. Thus, the MHT-based technique of this paper can contribute to the442

quality of precipitation accumulation, even if the improvement is not to the extent as that443

obtained on severe weather accumulation fields.444

It might appear that this quality-control technique is quite general and broadly applica-445

ble, but this is not the case. In order to carry out QC by insisting on temporal coherence,446

it is necessary to be able to look ahead. Otherwise, new initiation will always get removed.447

Looking ahead implies that the QC technique can only operate in a lagging sense, i.e., it448

can never operate on the latest time step of a sequence. Therefore, the quality control tech-449

nique described in this paper is useful only in scenarios where QC of the latest time step450

is not important. This restriction eliminates many practical applications in meteorology.451

One situation where it is acceptable to not apply the QC to the latest time step is when452

creating accumulation fields because one can QC the majority of frames that go into the453

21



accumulation product, while leaving the latest frame(s) unQCed.454

4. Summary455

Because accumulating gridded fields over time greatly magnifies the impact of impulse456

noise in the individual grids, it is important to be able to apply some quality control to457

accumulations beyond what is done on the individual grids. This can be achieved by ap-458

plying applying spatial and temporal coherence constraints. In this paper, spatial coherence459

constraints were imposed using hysteresis and temporal coherence constraints using MHT.460

The resulting QC method was applied to simulated data to quantify the improvements and461

explain the effect of various parameters. Finally, the quality control technique was applied462

to some real-world datasets and the resulting improvements were illustrated.463
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Fig. 1. Examples of accumulated grids over South Texas on May 10, 2012. (a) Instantaneous
estimate of the Maximum Expected Size of Hail (MESH) (b) MESH accumulated over 2
hours. (c) Instantaneous radar-derived rate of precipitation (d) Rainfall accumulation over
2 hours.
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Fig. 2. Why Multiple Hypothesis Tracking is needed: (a) The optimal assignment between
two objects in the first frame and three objects in the second frame. (b) The second best
assignment. (c) Once the third time frame is available, it is clear that the second hypothesis
was actually the better choice.
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Fig. 3. Combinatorial explosion results as a result of multiple hypothesis tracking: (Top)
The two best (K=2) hypotheses for assigning objects between two frames (Bottom) When
the third time frame arrives, there are two best hypotheses leading from the original two
best. Thus, there are four (K2) hypotheses to be considered.
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Fig. 4. MHT gracefully handles the problem of splits and mergers since both sides of a split
(or merger) will remain among the K-best assignments. Top: Optimal assignment Bottom:
Second-best hypothesis. As long as K >= 2, both hypotheses will be retained, and both
objects used in the accumulation.
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Fig. 5. (a,b): Two successive time frames of the simulated input grids. (c) Accumulation
of all 100 grids of the sequence. (d) Ideal accumulation that does not incorporate any noise.
(e) Accumulation when the individual time frames are QCed by insisting that objects last
at least 3 frames in one of the 4 best hypotheses. (f) Individual time frame QCed to remove
small or unassociated objects.
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Fig. 6. Impact of the hysteresis and MHT criteria on the quality of the accumulated grids.
(a) Impact of spatial coherence. As the size threshold is increased, the mean square error
initially drops but then starts to increase. (b) Both the Probability of Detection (POD) of
true objects and the False Alarm Rate (FAR) at which noise objects are wrongly identified
fall when the size threshold is increased. (c) Impact of temporal coherence. The mean square
error initially drops as the number of hypotheses are increased, but then starts to increase.
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Fig. 7. Illustration of the MHT-QC algorithm of this paper on a hail accumulation over
Oklahoma starting at 21:00 UTC on 16 July 2009. (a) Individual frame before QC (b) Same
frame after QC based on spatial and temporal coherence (c) Raw accumulation without any
QC (d) QCed accumulation (e) Actual hail reports on that day
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Fig. 8. Illustration of the MHT-QC algorithm of this paper on a two-hour accumulation of
low-level rotation over Oklahoma on 24 May 2011. (a) Individual frame before QC (b) Same
frame after QC based on spatial and temporal coherence (c) Raw accumulation without any
QC (d) QCed accumulation (e) Actual damage observed on the ground.
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Fig. 9. Illustration of the MHT-QC algorithm of this paper on a one-hour accumulation of
radar-derived precipitation over Oklahoma on 13 April 2012. (a) Individual frame before QC
(b) Same frame after QC based on spatial and temporal coherence (c) Raw accumulation
without any QC (d) QCed accumulation (e) Actual rainfall measured on the ground (in mm)
over the time period.

37


