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Abstract

Weather radar data is susceptible to several artifacts
due to anamalous propagation, ground clutter, electronic
interference, sun angle, second-trip echoes and biological
contaminants such as insects, bats and birds. Several meth-
ods of censoring radar reflectivity data have been devised
and described in the literature. However, they all rely on
analyzing the local texture and vertical profile of reflectivity
fields.

The local texture of reflectivity fields suffices to remove
most artifacts, except for biological echoes. Biological
echoes have proved difficult to remove because they can have
the same returned power and vertical profile as stratiform
rain or Snow.

In this paper, we describe a soft-computing technique
based on clustering, segmentation and a two-stage neural
network to censor all non-precipitating artifacts in weather
radar reflectivity data. We demonstrate that the technique
is capable of discrimination between light snow, stratiform
rain and deep biological ”bloom”.

1. Introduction

Weather radar data are used operationally to warn of
impending severe weather [1] and to create high-resolution
precipitation estimates [2]. For example, [3] demonstrated
that expected fatalities after Doppler radar installation in
the United States were 45% lower and expected injuries
were 40% lower. Radar data are routinely assimilated into
numerical weather models and used for the prediction of
convective systems [4].

All of these uses of weather radar require that echoes
on radar correspond, broadly, to precipitation. By removing
ground clutter contamination, rainfall from the radar data
using the National Weather Service (NWS) Weather Surveil-
lance Radar-Doppler 1998 (WSR-88D) can be improved [2],
[5]. A large number of false positives for the Mesocyclone
Detection Algorithm [6] are caused in regions of clear-air
return [7], [8]. A hierarchical motion estimation technique
segments and forecasts poorly in regions of ground clut-
ter [9]. Hence, a completely automated algorithm that can
remove regions of non-precipitating echo, such as ground
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clutter, anomalous propagation, radar artifacts and clear-air
returns from the radar reflectivity field would be very useful
in improving the performance of other automated weather
radar algorithms.

[10] describe the causes, effects and characteristics of
such contamination in weather radar data. [11], [12] de-
termined individual features, and combinations of features,
that can be used to remove range gates of radar reflectivity
data that correspond to “bad echoes”. Local neighborhoods
in the vicinity of every range-gate in the three WSR-88D
radar moments (reflectivity, velocity and spectrum width)
were examined and used for automated removal of non-
precipitating echoes. [10] used a decision tree to classify
range-gates into two categories — precipitation and non-
precipitation while [11] used a fuzzy rule base using features
that included the SPIN feature introduced by [10]. [12]
used a neural network to classify radar range gates into
precipitation or non-precipitation, and followed the pixel-
wise classification with clustering. A cluster was censored
if the majority of its pixels were determined to be non-
precipitating echo.

1.1. Biological Echoes

The methods of [10] and [11] worked well for anamalous
propagation. When followed with the clustering-based post-
processing of [12], the quality of the resulting fields met the
high threshold neccessary for fully automated quality control
of radar data. However, biological contaminants can not be
easily removed by means of such local texture or vertical
profile features.

Biological echoes are difficult to discriminate from true
precipitation because they share several characteristics of
precipitating echoes. Biological contaminants (such as birds
or bats) are moving, and therefore have non-zero Doppler
velocities — the magnitude and texture of these scatters is
very similar to that of widespread rain. Biological echoes
have similar radar reflectivity values in the vertical and
horizontal dimensions as snow or rain. As illustrated in
Figure 1, from local characteristics alone, it is difficult to
distinguish between biological artifacts and rain.

To discriminate between biological echoes and light
rain/snow, it is necessary to consider the characteristics



Figure 1. Why discriminating between biological echoes and light snow is hard. Top row: biological echoes; Bottom
row: winter precipitation. Reflectivity (first two columns) and velocity (third column) from Doppler radar are shown.
The snow case is from the KAPX radar on Jan. 17, 2009 at 19:23 UTC while the biological case is from the KARX

radar on May 25, 2008 at 04:04 UTC.

of the entire echo, not just the vertical and horizontal
neighborhood of a single pixel. Biological echoes tend to
be circularly symmetric, centered around the radar and tend
to drop in power as the distance from the radar increases
(since the biological target fills less and less of the radar’s
sampling volume). These are tendencies, and not universally
valid — storm cells may be circular, pass right over the radar
and exhibit a very similar reflectivity profile. In addition,
storm echoes may be embedded in an area of biological
contamination, as shown in Figure 2d.

2. Method

Because biological echoes have a global profile that can
be used to distinguish them from precipitating echoes, but
all other artifacts need to be discriminated based on local
characteristics, we followed the strategy of adding a feature
to the local texture-based neural network that would be a
probability that the pixel in question belongs to a biological
echo.

To evaluate this probability, we computed several features
and trained a neural network with one input, one hidden and
a single output node. This output node’s transfer function

was a sigmoid, so that its output would correspond to the
probability [13] that the cluster in question corresponded to
biological echo.

To compute characteristics of biological echoes or
”bloom”, bloom features need to be computed. Naively clus-
tering echoes based on contiguity will result in precipitation
embedded within the bloom (such as in Figure 1c) also being
considered part of the bloom and being potentially censored.
To identify echo over radar as being bloom, the following
steps are carried out:

1) Only range gates with an elevation within 4 km of
the radar are considered, following studies carried out
by [14] that indicated that this was where biological
echoes are concentrated.

2) The reflectivity factor (Z) values at constant azimuth
are averaged

3) The values of Z as it varies in range are fitted to line
segments

4) The longest line segment (Pearson coefficient of 0.9
or better) whose slope is negative is considered to be
the candidate bloom radius

Following the procedure outlined above takes into account
the expected drop-off in returned intensity by range of



Figure 2. (a,b): Examples of biological echoes: note that the characteristics of an entire echo may help identify
regions in which biological echoes are more likely. (¢) One difficulty: storms embedded in biological echo (d) Another
difficulty: light snow moving over the radar. The data are from (a) KNQA on 2008/08/04 at 04:31 UTC (b) KOAX on
2008/08/05 at 03:18 UTC (c) KDMX on 2008/08/05 at 06:07 UTC and (d) KBGM on 2008/12/05 at 13:00 UTC

biological echoes while stopping the bloom detection when
high reflectivities are encountered.

Once the bloom radius has been identified, several statis-
tics are computed on the radar echoes within the bloom
radius: (a) mean reflectivity (b) variance of reflectivity (c)
symmetry of the mean of octants of the bloom (d) variance
between the mean of the octants (e) fraction of the bloom
that is filled with echo and (f) bloom radius. These features
are used as inputs to a neural network that was trained to
output the probability that the echo in question corresponds
to bloom.

Each pixel in the radar scan is assigned a probability
of bloom following a simple set of rules. Echoes within
half-the-bloom radius are assigned the output probability of
the neural network. Between half-the-bloom radius and the
radius, low reflectivity echoes (defined as echoes of below
a temperature-determined threshold that is 0 dBZ in winter
and 20 dBZ in summer) are assigned the output probability
of the neural network. Beyond the bloom radius, pixels are
assigned the bloom probability only if they have low values
and are connected to a pixel that has already been determined
to be bloom.

The bloom probability result from the first neural network
is thus assigned to every pixel in the image. This feature is
provided as one of the inputs to a second, local-feature-based
neural network. Thus second network had, as input features,:
(1) Doppler velocity (2) mean of Doppler velocity (3) Stan-
dard deviation of Doppler velocity (4) Minimum standard
deviation of Doppler velocity in neighborhood (5) Spectrum
width (6) Reflectivity at lowest tilt (7) Neighborhood mean
of reflectivity (8) Standard deviation of reflectivity (9) Mini-
mum standard deviation of reflectivity in neighborhood (10)
SPIN [10] (11) Inflections [11] (12) Reflectivity at second
tilt (13) Mean reflectivity at second tilt (14) Difference
between reflectivity value and mean (15) Minimum standard
deviation (16) Maximum value in the vertical (17) VIL [15]
(18) Difference between the two lowest tilts (19) Echo Top

of 0 dBZ (20) Echo Top of 20 dBZ (21) Height of maximum
(22) Fraction of neighborhood filled and (22) Probability that
this pixel is part of a biological echo. The second neural
network had 21 of the inputs chosen via feature selection
as described in [12] and a 22nd determined by following
image morphological operations on the result of the first-
stage neural network. The second-stage neural network was
trained as in [12], and followed by the same cluster-based
postprocessing followed in that paper. The output of the
cluster-based postprocessing formed the final mask used to
censor the reflectivity field.

3. Results

The training of the first-stage neural network (to perform
the cluster-based discrimination between biological echoes
and storm echoes) was carried out on a dataset consisting of
34 examples of good data around the data and 54 examples
of biological artifacts. The good data points (which are
scarce because we needed to find examples of storms directly
over the radar) were repeated based on random selection
so that the two classes had equal apriori probability. This
dataset was divided 60:40 into a training and a validation
dataset, and the validation dataset was used to carry out early
stopping. The architecture of the neural network — 1 hidden
layer consisting of a single node — was set arbitrarily and
the validation dataset was used to carry out early stopping.
The ROC curve of the trained network on the validation set
is shown in Figure 3a.

The probabilities from the first neural network formed
the 22nd input to the second-stage neural network which
operated on a pixel-by-pixel basis. This neural network was
trained with much more data — nearly 1.5 million training
patterns without velocity and more than 5 million patterns
with velocity data. The ROC curve of the trained second-
stage network on the validation set is shown in Figure 3b.

The technique described in this paper has been imple-
mented and is being run in real-time to censor biological
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Figure 3. Measures of skill of (a) first-stage and (b) second-stage neural networks on their respective validation
sets.

echoes in radar data. Some examples of the technique’s
performance on independent cases is shown in Figure 4. The
following measures of skill are shown in the graph: Critical
Success Index [16], Heidke Skill Score [17], Probability of
Detection and Rate of False Alarm [18].
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Figure 4. (a) Example of biological echo seen in real-time (b) Bloom removed; as can be seen, bloom from one of

the radars has not been censored (c) Example of winter precipitation seen in real-time (d) All precipitation has been
retained.



