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ABSTRACT

Visualizing model forecasts using simulated satellite imagery have proven very useful because

cloud imagery can provide inferences about physical processes not associated with precip-

itation. A forward radiative transfer model is capable of providing such a visible channel

depiction of numerical weather prediction model output, but present-day forward models are

too slow to run routinely on operational model forecasts.

It is demonstrated that it is possible to approximate the radiative transfer model using

an universal approximator whose parameters can be determined by fitting the output of the

forward model to inputs derived from the model forecasts from which it was computed. The

resulting approximation is very close to the complex radiative transfer model and has the

advantage that it can be computed in a matter of minutes. This approximation is carried

out on model forecasts to demonstrate its utility as a visualization and forecasting tool.

1. Introduction

Precipitation forecasts from numerical weather prediction (NWP) models have tradition-

ally been presented to forecasters as accumulated depth over specified time intervals, say,

6 hours. Guidance regarding clouds has generally been lacking, aside from post-processed

statistics about general cloud properties such as cloud cover (e.g. Jakob (1999); Teixeira

and Hogan (2002)). Part of the reason for this rather ambiguous presentation of clouds

and precipitation is that many aspects of these features have been parameterized in forecast

models, rather than explicitly represented on the model grid (e.g. Sundqvist et al. (1989);

Janjic (1990)). However, in recent years increases in computer power have allowed opera-
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tional NWP centers to increase spatial resolution and explicitly resolve more key processes,

such as deep precipitating convection, that were previously parameterized (e.g. Weiss et al.

(2008); Dixon et al. (2009)). This transition has allowed for the development of new ways

to visualize explicit forecasts for clouds and precipitation.

Most of this visualization work has focused on precipitation. Explicit precipitation out-

put predicted by NWP models with grid spacing on the order of several km is now commonly

viewed as a simulated reflectivity product (e.g., Kain et al. (2008)). This product is par-

ticularly revealing not so much because it depicts the instantaneous precipitation rate, but

because the patterns formed by simulated reflectivity fields can be used to infer a mul-

titude of circulations, processes, and configurations associated with precipitating weather

systems (Koch et al. 2005). Simulated reflectivity provides useful guidance for forecasters

(e.g., Weisman et al. (2008)) and has been used for model validation in numerous arenas,

such as the National Oceanic and Atmospheric Administration Hazardous Weather Testbed

(NOAA HWT) (e.g. Kain et al. (2010b)).

Visualization of clouds, in the form of simulated satellite imagery, can also provide unique

information about NWP model output (e.g., Otkin and Greenwald (2008); Otkin et al.

(2009)). Although synthetic satellite imagery has received less attention in the weather fore-

casting community, it may ultimately prove to be more valuable than simulated reflectivity

because most clouds are non-precipitating. Thus cloud imagery can provide inferences about

physical processes not associated with precipitation (e.g., Feltz et al. (2009)) and/or processes

that could allow forecasters to anticipate better the development of precipitation. Synthetic

satellite imagery has also proven to be useful in the NOAA HWT in recent years (Clark

et al. 2011).
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One way to calculate the reflectance for the GOES 0.65µm channel is to use a complex

forward modeling system such as the Successive Order of Interaction (SOI) model developed

by Heidinger et al. (2006) wherein gas optical depths are computed for each model layer and

absorption and scattering properties are applied to each hydrometeor species predicted by

the model microphysics parameterization scheme.

Even with the recent development of fast forward radiative transfer models, comput-

ing simulated satellite observations, particularly those for visible channels, remains a very

time consuming task. For instance, approximately 13 hours are required to compute GOES

0.65µm reflectances for a single time step on the NSSL-WRF operational model domain (750

x 980 grid points) using the SOI model. Though the wall clock time could be substantially re-

duced by using multiple processors, the overall high computational cost remains and renders

the real time generation of such observations difficult using present computational resources.

Because of this, it is useful to explore other means to generate simulated visible satellite

imagery in real time. In this paper, we suggest the approach of creating an approximation

of the forward model using a parametric approximation.

Neural networks (NNs) are a non-linear statistical modeling tool that were motivated

by analogies to biological neural networks. Neural networks have enjoyed widespread use in

meteorological applications, ranging from prediction of rainfall amounts (Venkatesan et al.

1997), and diagnosing tornado probability (Marzban and Stumpf 1996) to quality con-

trol (Lakshmanan et al. 2007). However, all these uses of neural networks are data-driven,

aiming to predict a desired value based on inputs whose individual impacts are unknown.

Our use of neural networks is as an approximating mechanism, to approximate a known

function that is too complex to compute. In other words, we know the exact impact of each
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input variable, but the transfer functions are too time-consuming to compute. The use of

a neural network as a functional approximation is rarer in meteorological applications, but

has been explored before, notably by Krasnopolsky et al. (2008).

We employed a neural network of the form:

y =
M∑

j=1

wjh(
d∑

i=0

wjixi) (1)

where y is the output of the NN and the xis are the inputs (there are d “true” inputs with

x0 fixed to be a constant value of 1). The ws are referred to as the weights and the “transfer

function” h(x) is given by:

h(x) =
1

1 + e−x
(2)

Each layer of transfer functions in the neural network adds a “hidden layer” i.e. a set of

transformations whose inputs and outputs are not the inputs and output of the equation

as a whole. In this case, the input of the hidden layer is a weighted combination of the

input values xi. The output y of the NN is a weighted combination of the results of the

transfer function at each of the M hidden nodes. Neural networks of this form are capable

of approximating any continuous functional mapping to arbitrary accuracy and are therefore

suitable for use as universal approximators (Bishop 1995).

A natural question that arises is why we need to approximate the forward model using

the NN, rather than have the NN approximate the observed visible field directly. There

are several problems with training a NN to estimate visible channel reflectance from model

fields, but the key problem is that model forecasts (and even analysis fields) suffer from

displacement and distortion errors. In addition, some clouds visible on satellite imagery

may not be depicted in the model and vice-versa. Finally, the satellite visible imagery is
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influenced by surface reflectance, darkening due to sun angle, parallax errors, shadows, etc.

all of which would have to be accounted for when training a NN to predict the observed

value. Using a forward model where some of these effects can be switched off provides more

control when training a NN.

2. Approximating the Forward Model

The radiative transfer forward model was run on a representative set of numerical model

data. At each 2D pixel of the model grid, data values from various model fields (mixing

ratios, temperature, pressure, etc.) were used as inputs to a neural network. The goal of

training was for the resulting neural network to yield the best possible approximation of

what the forward model does on the dataset.

a. Training dataset

The optimization (or “training”) process for the NN consists of finding the best set of w’s

that will allow the output of the neural network to approximate the behavior of the radiative

transfer forward model on the dataset. In other words, the target value, yt, is obtained from

the radiative transfer model and the input xis are obtained from the NWP model forecast.

The NN training process consists of determining the weights, ws, at which the square error

computed over all the pixels of the training dataset (i.e.
∑

(yt − y)2) is minimum.

The input dataset consisted of outputs from a Weather Research and Forecasting (WRF: Ska-

marock et al. (2005)) model that is run routinely at the National Severe Storms Laboratory
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(NSSL), hereafter, the NSSL-WRF (Kain et al. 2010a). The NSSL-WRF has a 4 km grid

length (grid size of 1200x800), 35 vertical levels and a time step of 24 seconds. It uses the

WRF single-moment 6-Class microphysics scheme (WSM6) microphysics scheme of Hong and

Lim (2006). Initial and laternal boundary conditions are obtained from the North American

Model (Rogers et al. 2009).

The input dataset consisted of NSSL-WRF model forecasts for 18Z to 23Z in one-hour

increments on Apr. 3, 1974, July 1, 2009, Aug 12-16 2009 excluding Aug. 15, 2009. At that

time, the NSSL-WRF domain was 980x750, covering the eastern 2/3rds of the continental

United States. These model forecasts were provided to the forward model and the resulting

visible channel reflectance values stored for each grid point at each time period. Because

these datasets cover a wide area, this dataset captures a wide variety of weather situations.

One problem is that even with just six days of data, the representative training sets are

incredibly large. We used data from 36 forecasts in order to train the model. Thus, the

size of the input is about 26.5 million patterns (there is one pattern corresponding to every

NSSL-WRF surface grid point). The model fields are numerous as well. Fourteen 3D fields

such as temperature and perturbation geopotential are produced at every time step and for

each of these fields, one would have to consider 35 vertical slices. In addition, there are

67 2D fields such as precipitation and soil moisture. Using all of the possible inputs would

result in a training set that is about 15 billion points, a rather unrealistic option. Hence, we

reduced the number of inputs by vertically integrating some of the 3D fields and choosing

the input parameters based on the variables considered by the radiative transfer model and

how these variables were employed within it.

In the forward model of Heidinger et al. (2006), gas optical depths are computed for each
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NSSL-WRF model layer using a lookup table containing layer atmospheric transmittances

computed using line-by-line calculations. Ice cloud absorption and scattering properties, such

as extinction efficiency, single scatter albedo, and full scattering phase function, obtained

from the work of Baum et al. (2006) are subsequently applied to each frozen (i.e. cloud ice,

snow, and graupel) hydrometeor species predicted by the WRF model microphysics param-

eterization scheme. A lookup table based on Lorenz-Mie calculations (for the scattering of

electromagnetic radiation) is used to assign the properties for the liquid (cloud water and

rain water) species. Visible cloud optical depths are calculated separately for the liquid and

frozen hydrometeor species following the work of Han et al. (1995) and Heymsfield et al.

(2003), respectively. Surface albedo and emissivity are obtained for land grid points us-

ing the Filled Land Surface Albedo Product dataset developed by the MODIS atmospheric

science team1. Over water surfaces, changes in reflectance due to waves and sun glint are

considered using the model developed by Sayer et al. (2010). Finally, the simulated skin tem-

perature and atmospheric temperature profiles along with the layer gas optical depths and

cloud scattering properties are input into the Successive Order of Interaction (SOI) forward

radiative transfer model (Heidinger et al. 2006), which is used to compute the simulated

visible reflectances.

The neural network is expected to approximate all these computations by the univer-

sal approximator shown in Equation 1, except for the following modifications. Usually, the

forward model takes the sun angle into account in order to darken the visible image appro-

priately. Since our goal is to create a synthetic visible field for the purpose of visualizing

the model microphysics, darkening the image is inappropriate – there is no reason why one

1http://modis-atmos.gsfc.nasa.gov/ALBEDO/index.html
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should not be able to visualize the model at night! Therefore, the forward model was modi-

fied to produce images with a fixed sun angle corresponding to local noon at all model output

times. Another change that was made to the output of the forward model was to subtract

out the surface albedo because a forecaster is interested in visualizing the cloud albedo and

there is no need, in a synthetic field, to contaminate it with reflectance from the earth’s

surface.

Finally, all clear grid points (i.e. pixels where the mixing ratios of cloud water, cloud ice

and snow were all zero) were removed from the training set as, according to the numerical

model, there would be no cloudcover whatsoever at that point. In the output of the neural

network when run on operational NSSL-WRF model forecasts, such points were assigned a

visible reflectance value of zero.

From the NSSL-WRF model layers, the following variables were used to train the ap-

proximation to the forward model:

i. qvapor, qcloud, qrain, qice, qsnow, qgraup which are the mixing ratios (kg/kg) of water

vapor, cloud water, rain, cloud ice, snow and graup respectively. These quantities which

are available at every model layer were vertically integrated by weighting each layer’s

value with the thickness of that model layer in meters.

ii. qvapor, qcloud, qrain, qice, qsnow, qgraup (as above, but using only the top 17 model

layers for the vertical integration.)

iii. qvapor, qcloud, qrain, qice, qsnow, qgraup (vertically integrated by weighting each

layer’s value by presssure/temperature instead of by the thickness of the layer)

iv. minimum temperature, height of minimum temperature
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v. Skin surface temperature (TSK)

vi. windspeed

b. Histogram equalization and downsampling

For the NSSL-WRF output on just these six days, there were a total of nearly 5 million

grid points for which one of qcloud, qice and qsnow was non-zero. A histogram of the visible

reflectance values (Figure 1) indicated that the majority of these values were low values.

These aspects of the training dataset pose two problems: Firstly, training directly with the

original dataset would cause a machine intelligence algorithm to focus on getting low visible

reflectance values right at the expense of the far less frequent high reflectance values. This

is, of course, unsuitable behavior. In order to use a visible field to visualize a model field, it

is critical to get the higher visible reflectance values right – the low values are not quite as

important. Secondly, five million data points is far too many for most machine intelligence

or statistical software to handle on the type of computers (workstations with 4 GB of RAM)

that we had on hand to do the training.

To address these issues, we carried out a process of histogram equalization and down-

sampling. We downsampled the nearly 5 million point dataset to a fifth of its size. These

million grid points were obtained by randomly selecting grid points from the original dataset

where the probability that a grid point was selected depended on its brightness value. Thus,

grid points with a low brightness value had a lower probability of being selected while grid

points with a high brightness value were more likely to be selected. The likelihood of a grid
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point with brightness value b being selected depends on r, the repeat ratio, given by:

r = nS/P (b) (3)

where n is the number of non-zero bins in the histogram, S the subsampling ratio (0.2 to

reduce the dataset from 5 million points to 1 million) and P (b) the probability density of

that brightness value (read out from the histogram in Figure 1). If the r is, say 0.3, the grid

point is selected with a probability of 0.3. This is achieved by generating a random number

uniformly distributed in the range [0 − 1] and selecting the point if the random number is

below 0.3. If the r is 2.3, the grid point is selected twice and a third time with a probability

of 0.3. To avoid overfitting extremely rare values, the repeat ratio was capped at 5.

After histogram equalization and subsampling, the resulting dataset of nearly million

grid points had the frequency distribution shown in histogram on the right in Figure 1.

c. Neural network training

A neural network with 31 input variables and 3 hidden nodes (i.e. in Equation 1, d = 31

and M = 3) was trained on 1.01 million points selected through histogram equalization and

randomized subsampling from a dataset consisting of 36 timesteps from 6 days of NSSL-WRF

model runs. We experimented with increasing the number of hidden nodes (see Figure 2).

While increasing the number of hidden nodes resulted in a lower mean square error in the

approximation, this was subject to the classic bias-variance tradeoff. Thus, as shown in the

second panel of Figure 2, using 9 hidden nodes would result in a larger bias but lower variance.

We chose to use the neural network with 3 hidden nodes because it has the nice property

of having nearly all errors bounded within 0.1 (the dotted horizontal lines) while having
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only a slightly higher mean square error than the 9-node network (0.08 vs. 0.075). The

approximation error (y − yt) is is dimensionless and on the same scale as visible reflectance

(0-1).

An example of the output of the forward model (run on NSSL-WRF model output valid

at 20Z on Aug. 13, 2009) and the corresponding NN approximation are shown in Figure 3.

Data from Aug. 13, 2009 were part of the training datasets. The bottom panels of Figure 3

show the output of the radiative transfer model and the NN approximation on NSSL-WRF

forecast valid at 18Z on Aug. 28, 2009. This is a dataset that was not used in creating the

approximation i.e. it was an independent test dataset. The first thing to note is that there

are anticipated differences – the simulated imagery does not depict the land in areas where

there is no cloudcover. Beyond that, the differences between the two images are only slight

– some clouds appear brighter and others a little darker, but the cloud structure is faithfully

represented in the approximation.

Magnitude differences between the output of the radiative transfer model and the NN

approximation over the entire training dataset are shown in second panel of Figure 2. This

analysis of errors was carried out over the original 5-million points in the training dataset

i.e. before histogram equalization and downsampling. Looking at the graph for M = 3, it

can be seen that the approximation errors are small and that the bias varies as a function

of the “true” reflectance (i.e. reflectance value from the radiative transfer model). At

very low values, below about 0.2, the approximation overestimates the reflectance (since

the mean value of the approximation error,y − yt, is greater than zero in this interval).

At moderate values of reflectance, between about 0.2 and 0.5, the approximation tends to

be an underestimate. At somewhat higher reflectance values, between about 0.5 and 0.7,
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the approximation is again an overestimate – it is these clouds that appear brighter in the

simulated imagery in Figure 3. Finally, the approximation underestimates extremely high

values (reflectances above 0.7). We would like to caution that this graph should not be

overanalyzed – the error magnitudes are almost all below 0.1 (shown by dotted horizontal

lines). The error bars in the graph represent one standard deviation. Any biases that are

present in the approximation are very small.

3. Visualization

The visible imagery are produced once a day at hourly intervals using input from the

NSSL-WRF forecast microphysical data. Once the forecast has completed (approximately

4 hours from the initialization time, 00 UTC), the visible images are produced within 5

minutes on a single workstation. The full forward model, on the other hand, would have

required a few hours computation time to run on a cluster of workstations.

Output of the visible imagery are made available for viewing on the web with options

of two background fields: clear-sky surface albedo, and Normalized Difference Vegetation

Index (NDVI).2

The surface albedo is provided by the radiative transfer forward model of (Heidinger et al.

2006) and is based on solar elevation angles from August 2009. The NDVI data are produced

from a 14-day composite of NOAA/AVHRR data by the USGS EROS Data Center. The

data currently used as the background for the visible imagery are typical of summer. The

NDVI image is color enhanced to represent the relative “greenness” of the surface.

2http://www.nssl.noaa.gov/ rabin/vis wrf
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There is also an option to display microphysical quantities from the forecast model as

overlays on the visible imagery; vertically integrated cloud liquid water, rain water, ice,

snow, and forecast precipitation accumulated in the previous hour. This option is useful

to visualize the microphysical composition of cloud fields being viewed, and in relating the

model forecast parameters with each other. An example of the available visualizations on

a test dataset is shown in Figure 4. The output of the forward radiative transfer model on

this NSSL-WRF forecast is shown in Figure 3.

The visible imagery created from the radiative transfer forward model were produced at

two different forecast times (18Z and 22Z) for comparison with the neural network version

during the NOAA Hazardous Weather Testbed (HWT Clark et al. (2011)) and GOES-R

Proving Ground Project in 2010. While the visible imagery from the forward model took

hours to compute and were generally available well after the valid time of the forecast, the

visible imagery from the neural network approximation were available minutes after the

WRF forecasts were produced. It took, on average, 3 minutes of wall-clock time to generate

the simulated visible image from a WRF forecast, with nearly 80% of time used in reading

the WRF model output. If the approximation is incorporated into the WRF post-processing

itself, where the inputs to the neural network are already in main memory, the computation

of visible imagery can be reduced to a few seconds per forecast period.

Example images from a 18 hr forecast valid at 18 UTC on Dec 13, 2010 are shown in

Figure 5. It should be noted that the simulated visible reflectance is reasonable even though

winter-time cases were not part of the training dataset. Arctic air flow over the Great Lakes

and south coast U.S. coast was occuring at this time. North to south cloud oriented bands

to the south of Lakes Michigan, Huron, and Erie were associated with heavy lake effect snow
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squalls. Cloud snow content and surface accumulation are significant in these areas. Several

cms of snow were observed near these areas. Parallel cloud bands and cellular clouds off shore

of the southeast U.S. and Gulf coasts are evident in the imagery. Given the shallow nature

of most of these clouds, they are composed mainly of cloud water without much rainwater.

Large areas of thin cloud cover composed mainly of ice surround the snow squalls, and are

widespead through an upper-level trough and surface low in the northeast U.S., and with an

upper jet stream from northern California to Montana.

Figure 5g shows an observed visible image from the GOES-13 (east) geostationary satel-

lite corresponding to the 18-hour forecast from the NSSL-WRF shown in Figures 5a-f. Much

of the difference in cloud locations and visual properties between the observed (Figure 5g)

and NN-simulated image (Figure 5a) can be attributed to forecast error. In general the

qualitative structure of the cloud areas are similar, especially the deeper (brighter) clouds

with precipitation or high water, ice, snow content, and the shallow convective clouds where

cold air is moving over the warmer waters off the Atlantic and Gulf of Mexico coasts. Some

of the clear sky regions in the observed image (U.S. Midwest) appear bright (high albedo)

because of snow cover. The snow covered surface cann’t be easily distiguished from cloud

cover from the visible image alone. This is not the case in the simulated image since the

assumed clear sky albedo is representative of the summer months.

4. Summary

Although a forward radiative transfer model is capable of providing a depiction of non-

precipitating clouds in a numerical weather prediction model forecast, present-day forward
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models are too slow to run routinely on model forecasts. Therefore, an approximation

to the behavior of a radiative transfer model on some representative NWP forecasts was

created using a neural network. The resulting approximation is very close to the complex

radiative transfer model, but has the advantage of being calculable in a few minutes. This

approximation is now carried out routinely in the NOAA Hazardous Weather Testbed and

used to visualize NSSL-WRF forecasts.
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Fig. 1. Effect of histogram equalization. Left: histogram of pixel brightness values based on
the NSSL-WRF inputs. Right: histogram of pixel brightness after randomized resampling.
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Fig. 2. Effect of the number of hidden nodes (M) on the approximation error. Left: The
reduction in mean square error (MSE) during NN training. In general, more hidden nodes
lead to lower MSEs. Right: Using 3 hidden nodes has the nice property that the bias is
within 0.1 for all reflectances.
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Fig. 3. Top left: Output of forward model run on NSSL-WRF model output valid at 20Z
on Aug. 13, 2009 Top right: Output of approximate model run on the same NSSL-WRF
model variables. Bottom: same, but on NSSL-WRF forecast valid at 18Z on Aug. 28, 2009.
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Fig. 4. 18-hour forecast valid at 18 UTC on Aug. 28, 2009. Relative values of superimposed
quantities (Kg/m**3) increase from blue, to green, to red. (a) Visible image for 18 UTC 28
Aug 2009 simulated using the NN approximation (b) same as a, but with vertically integrated
cloud snow content superimposed. (c) same as a, but with 1-hr accumulated precipitation
superimposed. (d) same as a, but with vertically integrated cloud ice content superimposed.
(e) same as a, but with vertically integrated cloud cloud water content superimposed. (f)
same as a, but with vertically integrated cloud rain water content superimposed. (g) Ob-
served GOES-12 visible satellite image 18:15 UTC 28 Aug 2009
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Fig. 5. 18-hour forecast valid at 18 UTC on Dec. 13, 2010. Relative values of superimposed
quantities (Kg/m**3) increase from blue, to green, to red. (a) Visible image for 18 UTC 13
Dec 2010 simulated using the NN approximation (b) same as a, but with vertically integrated
cloud snow content superimposed. (c) same as a, but with 1-hr accumulated precipitation
superimposed. (d) same as a, but with vertically integrated cloud ice content superimposed.
(e) same as a, but with vertically integrated cloud cloud water content superimposed. (f)
same as a, but with vertically integrated cloud rain water content superimposed. (g) Ob-
served GOES-13 visible satellite image 18:15 UTC 13 Dec 2010
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