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ABSTRACT

It appears to be a common belief that processing, such as interpolation, clustering or smoothing, of weather
radar reflectivity fields ought to be carried out on the reflectivity factor (Z) and not on its logarithm (dBZ). It is
demonstrated here by means of a statistical study on a large dataset that, contrary to common belief, processing in
dBZ is better for such applications.

1. Motivation

Image processing of weather radar reflectivity
fields (the postprocessing of radar data using values
at adjacent range gates) traditionally has been carried
out in dBZ, e.g: Delanoy and Troxel (1993); Johnson
et al. (1998); Lakshmanan (2004); Charalampidis
et al. (2002); Anagnostou (2004); Steiner and Smith
(2002); Kessinger et al. (2003). This author could
find no successful postprocessing of radar moment
data (not pulses at a single gate, but values at adjacent
gates) that has been carried out in terms of the
reflectivity factor measured in mmi6 mm−3, hereafter
Z.

However, there appears to be a persistent belief,
particularly among radar engineers (and noticed by
this author in the course of having many papers
reviewed), that image processing of radar reflectivity
in an “artificial” quantity such as dBZ is wrong.
The radar measures Z, the argument seems to go,
so any interpolation or smoothing ought to be carried
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out in Z and not dBZ1. This argument is a fallacy.
To see why, imagine a hypothetical instrument that
measures the spatial variation of the square root of the
density of a substance. Suppose that an intermediate
pixel was not measured and one must estimate the
value at the missing pixel. Should the value at the
missing pixel be estimated by linearly interpolating
measured values (the square root of the densities)
at adjacent pixels or the “artificial” values (obtained
by computing the squares of the measurements at
the adjacent pixels, interpolating the squares and
then taking the square root)? Naturally, the answer
depends on the variation of density of the substance
being measured, on whether the density or the square
root of the density is linear. The better field for
carrying out linear interpolation has nothing to do
with which quantity gets measured and everything
to do with which quantity varies linearly within the
substance being measured.

As will be shown later, linear interpolation is
closely related to operations such as clustering

1Note that this paper deals with image processing
of radar moment fields, and not with pulses at a single
range gate. I have nothing to say here about the
relative merits of doing signal processing in Z or in
dBZ.
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and smoothing of radar reflectivity images.
Consequently, an appropriate way to address the
question of whether it is better to carry out image
processing operations in Z or in dBZ is to examine
a large weather radar reflectivity dataset and verify
which is more linear: variation in Z or in dBZ.
The author carried out such an experiment and reports
those results in this note.

Does it matter whether one interpolates dBZ or
Z? Yes, because the results can be dramatically
different. Imagine interpolating between two values
46 dBZ and 53 dBZ. Interpolating in Z would
give the mid-way value as 50.8 dBZ whereas
interpolating in dBZ would give the mid-way value
as 49.5 dBZ. This difference of 1.3 dB, especially
aloft, can be dramatic in its effect on algorithms
such as hail estimation. Interpolated Z values are
consistently larger than interpolated dBZ values since
an interpolated dBZ value is akin to a geometric mean
of the Z values2 and the geometric mean is always
smaller than the arithmetic mean for non-negative real
numbers.

2. Method

WSR-88D reflectivity data from the Little Rock,
Arkansas radar from 1 January to 31 December 2007
(at 1 km × 0.95o resolution)were analyzed in this
experiment. These data were chosen solely because
the author happened to have them readily available
on disk. Radials of the lowest elevation scan within
230km of the radar were searched for “triads’. A
triad is defined as a group of three adjacent range
gates that all had valid data, i.e. data above the
signal-to-noise threshold.

Within each triad, an interpolated value was
computed from the two end values and compared
to the value at the center. The interpolation was
carried out in two ways: 1) by simply averaging
the dBZ values and 2) by converting the dBZ
values to Z, averaging the Z values, and then
converting the averaged Z value back to dBZ. Using

2 This is because:

dBZmean = 0.5(dBZ1 + dBZ2)
= 0.5(10log(Z1) + 10log(Z2))
= 5log(Z1Z2)
= 10log(

√
Z1Z2)

this procedure, one can measure the interpolation
error when interpolating in dBZ and in Z. If
the interpolation error is measured in dB, the
interpolation error when interpolating in dBZ is given
by:

edBZ(dB) = z0 − (z−1 + z1)/2 (1)

where the reflectivity values in the triad are
(z−1, z0, z1) with z0 being the reflectivity value of the
center gate in dBZ. The interpolation error (in dB)
when interpolating in Z is given by:

eZ(dB) = z0 − 10 log10((10z−1/10 + 10z1/10)/2)
(2)

Similarly, one can compute the interpolation error in
mm6i mm−3 by first converting dBZ values to Z and
then computing the error. The interpolation error in
mm6 mm−3 when interpolating in Z is given by:

edBZ(Z) = 10z0/10 − 10(z−1+z1)/20 (3)

whereas when interpolating in dBZ is given by:

eZ(Z) = 10z0/10 − (10z−1/10 + 10z1/10)/2 (4)

3. Results

Statistics of the interpolation errors on all triads
from a year’s set of WSR-88D data are shown
in Table 1. The root mean square error (RMSE)
is shown first with errors in dB and then in
mm6mm−3. As can be observed readily from the
first row of that table, interpolation using dBZ is
better whether we consider the RMSE, the bias,
the variance or a pair-wise comparision. All these
statistics demonstrate that linearly interpolating the
dBZ values is better. The total number of triads
considered and the finite values of the variances make
most statistical tests here superfluous. For example,
the significant t-value for a paired difference test
at 108 degrees of freedom and significance level of
0.001 is about 3.3 whereas the computed t-value is on
the order of 104. Thus the differences in this table
are all statistically significant.

Do the results change if one were to consider
only low reflectivity values, only high reflectivity
values, or only triads where the endpoints have
large reflectivity gradients? The answer to all of
these questions, as shown in the remaining rows of
Table 1, is “no”. Whether one considers the overall
set of triads, or slices and dices them based on the
reflectivity values or based on reflectivity gradients,
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Table 1: Comparing two forms of interpolation. The first row shows the statistics over the complete year of
data. The remaining rows show statistics when the data are divided in different ways based on the values of the
endpoints of the triads: cases where one endpoint is greater than some threshold, cases where both endpoints are
greater than some threshold and cases where the gradient between the endpoints is greater than some threshold.
The penultimate column is the fraction of triads where interpolating in dBZ is better (ties are not counted) and the
last column provides the total number of triads in each category.

Triad Category Interpolating Z Interpolating dBZ Fraction where Number of
RMSE (dB) RMSE (Z) RMSE (dB) RMSE (Z) dBZ better triads

overall 4.17 6795.74 3.8 6713.8 0.54 2.2e+09
one > 0 dBZ 4.08 7234.26 3.65 7147.04 0.55 2.0e+09

one > 20 dBZ 4.29 16962 3.44 16757.5 0.57 3.6e+08
one > 40 dBZ 4.63 62600.1 3.66 61835.2 0.55 2.6e+07
both > 0 dBZ 3.49 7840.36 3.26 7747.59 0.55 1.7e+09
both > 20 dBZ 2.78 20480.6 2.64 20356.9 0.54 2.4e+08
both > 40 dBZ 2.77 91436.3 2.73 93215.5 0.52 1.0e+07

gradient > 2.5 dBZ/km 6.35 10218.4 5.33 9848.66 0.6 5.4e+08
gradient > 5 dBZ/km 9.15 14129.8 6.99 12656.3 0.65 1.6e+08

the result is consistent: interpolating in dBZ results
in a lower interpolation error. Physically, then, the
quantity being measured (the hydrometeor content
of the atmosphere) by a weather radar is more
linear in dBZ than in Z. Hence, based on the data,
interpolation across range gates is, on average, more
accurate when done in dBZ than in Z.

The gradient-wise segregations point out
something very critical (Figure 1). Based on
the statistical evidence, as the absolute value of the
gradient (between the two values being interpolated
over) increases, interpolation in dBZ becomes the
clearly better choice. Indeed, if the two end points
are separated by more than 10 dBZ (so that the
gradient is more than 5 dBZ/km), interpolation in
dBZ is better twice as often (65% to 35%) than
interpolation in Z. The higher the gradient, i.e. the
less uniform the field, the more important it is that
interpolation be carried out in dBZ.

4. Discussion

The implications of this result go beyond just
interpolation and play into the choice of how
to carry out any linear operations on the radar
reflectivity values at adjacent gates. Nearly all
image processing filtering operations are linear. For
example, smoothing a field is commonly done by
replacing a pixel by the average value of its neighbors.
This is the same as subtracting an error estimate from

Figure 1: The odds favoring dBZ interpolation
over interpolation in Z as the gradient exceeds a
specific threshold. The higher the gradient, the more
important it is that interpolation be carried out in
dBZ.
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each pixel’s value, with the error estimate being x−x̄,
where x is the value at that pixel and x̄ the average
pixel value in the pixel’s neighborhood. Expand out
x̄ in terms of the neighboring values and it is easy
to see that smoothing a dBZ field implies subtracting
a fraction of the dBZ values of neighboring pixels.
Hence, smoothing of radar reflectivity images is better
done in dBZ than in Z.

The literature on image processing of weather
radar data has gotten this right, carrying out
processing of adjacent range gates in dBZ and
not Z. A median filter is different because x̄ is
independent of monotonic transformations in x, but
techniques that use a weighted average (Delanoy
and Troxel 1993; Lakshmanan 2004; Anagnostou
2004) to compute x̄ involve subtracting dBZ values.
Similarly, parameters such as the texture of the
dBZ field used by Kessinger et al. (2003) boil
down to arithmetic operations on dBZ values, not
Z. Methods of storm identification from reflectivity
also operate on constant-dBZ increments (Johnson
et al. 1998; Rosenfeld 1987; Crane 1979) because
increments in Z are numerically problematic. Such
constant dBZ increments, not constant Z increments,
are widely used whenever adjacent pixel values need
to be compared, for example by Steiner and Smith
(2002) to compute their textural feature.

Pixel-wise operations such as Z-R relationships
can afford to operate in Z, but any clustering,
smoothing, segmentation or feature extraction
technique that relies on the reflectivity value at
adjacent pixels is better done in dBZ than in Z.
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REVIEWER COMMENTS

[Author’s responses in blue italics.]

REVIEWER A (Mark Askelson):

Initial Review:

Recommendation: Major revision

Substantive comments:

p1, P2: I believe that this is a good point, but note that, as indicated by the questions at the end of this paragraph,
it is based upon the assumption that a linear interpolation technique is going to be used to estimate the value
at the missing pixel. Of course, this is only one objective analysis approach that one may use and oftentimes
will produce undesirable results (e.g., discontinuities in derivatives at observation locations). Moreover, objective
analysis fields commonly replicate nonlinear characteristics of input fields, which is, of course, desired. Thus,
please consider either indicating earlier in the paragraph that the estimation method being used in this example is
linear interpolation or making the argument more general.

Yes, I have now explicitly used “linearly interpolating” so that it is clear where I am headed. Also, as stated
later in this review, the point of this paper is not objective analysis but image processing. Thus, we are concerned
mainly with linear operations over short distances. I use interpolation as the machinery to demonstrate linearity.

p1, P4: This is an important point and I am glad you have included it. However, I think it would be helpful
if you show how the two means are related so that the reader can have a better understanding of the arithmetic-
vs. geometric-mean statement (here, capital letters indicate logarithmic units and lower-case letters indicate linear
unitsplease see technical item 1 for why I follow this convention):

A1 =
Z1 + Z2

2
=

10 log z1 + 10 log z2

2
=

10 log(z1z2)
2

= 10 log(z1z2)1/2

and

A2 = 10 log a2 = 10 log
z1 + z2

2

Thus, averaging two logarithmic radar reflectivity factors produces 10log of the geometric mean of the linear-units
values while averaging of linear-units values, once converted into a result having logarithmic values, produces
10log of the arithmetic mean. From a theoretical standpoint I believe that it is important to show this as it
illustrates why the two approaches will not generally produce the same value.

Done.

In addition, I believe that the 52 dBZ result presented is incorrect. When I compute the average radar reflectivity
value by converting 46 dBZ and 53 dBZ into linear values, averaging them arithmetically, and then converting the
result back into logarithmic values, I obtain 50.78 dBZ. Thus, I obtain a difference of 1.28 dB (the proper unit
for dBZ - dBZ is dB).

The reviewer is correct; I have now fixed this.

I have a concern here — it is that testing using logarithmic units inherently favors the arithmetic logarithmic
average. I believe that to be fair, one should also compute errors in linear units in the following way, with ea log a
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meaning error of the arithmetic logarithmic average and elina meaning error of the arithmetic linear average:

ea log a(mm6mm−3) = z0 − 10
z−1−z1

2 /10 = z0 − (z−1z1)1/2

and
ealina(mm6mm−3) = z0 −

z−1 + z1

2
where again capital letters imply logarithmic units and lower-case letters imply linear units.

My concern regards the logarithmic operations that occur in different relative locations in (1) and (2) and what
impact they have on relative error values. Putting (1) and (2) into linear units results in

ea log1
=

z0

(z−1z1)1/2
=

1
1 + ε1/z0

and
ealin2 =

z0
z−1+z1

2

=
1

1 + ε2/z0

where (z−1z1)1/2 = z0 + ε1 and z−1+z1
2 = z0 + ε2. If logarithmic values of radar reflectivity factor have a

linear spatial variation over three consecutive range resolution volumes, then ea log a = 0 and ea log a(1) = 1.
Alternatively, if linear values of reflectivity factor have a linear spatial variation over three consecutive range
resolution volumes, then ealina = 0 and ealin(2) = 1. Thus ea log a, ealina, ea log a(1), and ealin(2) provide
the desired error characteristics for the situation of purely (spatially) linear fields (for ea log a(1) and ealin(2) the
logarithmic operation produces 0 dB in both cases).

However, because the error values computed using (1) and (2) involve taking the logarithm of ealoga(1) and
ealina(2), ε1 (or ε2) values that have the same magnitude (in linear units) but opposite signs will produce errors
that have different magnitudes. If, for instance, ε1/z0 = +/-0.1, one obtains -0.4139 dB from (1) for ε1/z0 =
+0.1 and 0.45757 dB for ε1/z0 = -0.1. Moreover, considering that the geometric mean is always smaller than the
arithmetic mean and that arithmetically averaging logarithmic reflectivity values is equivalent to taking 10 log of the
geometric mean of the linear-units values whereas the other approach involves taking 10 log of the arithmetic mean
of the linear-units values, it seems possible that ε1/z0 is slightly negative more often than ε2/z0 is which, owing
to the logarithmic operation could skew the results. This argument, of course, leverages the idea of linear-units
reflectivity values that are of the same magnitude but different signs, which of course will not generally be the case.
However, I believe that it does illustrate the potential impact of the logarithmic operations in (1) and (2) and, thus,
motivates the computation of errors using ea log a and ealina for, at the very least, comparison purposes.

Fair point: a new column has been added to the table, with the RMSE measured in mm3 mm−6. The results
remain the same. In any area with some structure, the dBZ values are more linear. Also, the pair-wise tests (the
fraction when dBZ is better) is independent of the units being used.

My most significant concern regards the linearity-implies-which-field-to-use-argument. While I agree that if the
underlying field is spatially linear one would do well to apply an analysis technique that retains its spatial linearity, I
argue that the situation is much more complicated than this. The examples given (linear interpolation and boxcar
averaging) are both relatively simple objective analysis schemes, the first of which enforces linearity between
interpolation points and the second of which does not generally produce spatially-linear analysis fields (and
both of which have significant shortcomings like discontinuities in derivative fields and ringing in the response
function). Objective analysis schemes used in the atmospheric sciences can, generally, be expressed in terms
of Distance-Dependant Weighted Averaging (DDWA; e.g. Askelson et al. 2005), which is a linear operation.
However, just because DDWA is a linear operation, this does not mean that DDWA will produce linear spatial
(or temporal) variations. On the contrary, most geophysical fields contain significant nonlinearity, the degree
of which depends upon the scales being considered. Thus, DDWA schemes generally retain at least some of
this nonlinearity. Radar reflectivity factor fields, whether viewed using logarithmic or linear units, undoubtedly
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contain nonlinear variations. Here, values were analysed over a 3 km distance. Of course, even a highly
nonlinear field can be decomposed into linear changes if these linear changes occur over small enough distances.

The finding that logarithmic-units values are more linear over small distances (up to 3 km) than linear-units values
only, in my opinion, has relevance for variations having scales of up to 3 km. Because DDWA schemes are
commonly applied over distances greater than 3 km when analysing radar data and because they may not retain
spatial linearity on a 3 km scale, I believe that statements should be qualified in a manner similar to “. . . if one is
using an objective analysis method that retains spatial linearity over short distances, then using logarithmic values
is preferable relative to using linear values.” Thus, my concern is that given the evidence presented here, the
statement that logarithmic reflectivity values should be used in all objective analysis schemes (all smoothing) is too
broad. Before closing it is noted that if a field is linear over certain spatial scales and an objective analysis does not
replicate that linearity, then this would of course be a detriment. However, such a scheme may sacrifice linearity
on those scales to more accurately represent variations on other scales. Consequently, trade-offs at different scales
may occur that may be good or bad, depending upon an analysts preferences.

The goal of the article is to determine the field on which image processing operations ought to be carried out. It is
not about determining how to carry out objective analysis. In other words, we know that most image processing
operations (e.g: interpolation, smoothing, clustering) are linear and work only when the data values that are
being operated on vary linearly. I use linear interpolation at known values to see if the field varies linearly over
the scale of a few pixels. It turns out that operating in dBZ is better than operating in Z if we want local linearity.
Therefore, I argue, it is better to carry out image processing in dBZ.

The reviewer is absolutely correct that over larger distances, atmospheric fields are non-linear. But that does not
affect our argument which is solely about image processing operations (not objective analysis).

There are two reasons why such nonlinearity over large distances does not affect our argument (again our argument
is about image processing, not objective analysis: the title of the paper makes our focus quite clear). Firstly,
linear interpolation is used in this paper just as the machinery to verify a Hilbert space — a system of units
within which spatial variation at the scale of a few image pixels is linear. Thus, we are not concerned with linear
interpolation over large distances or multiple pixels. Secondly, most image processing operations (smoothing,
texture, subsampling, etc.) model an image as a Markov random field by which we mean that they assume a
pixel’s value is correlated only on its immediate neighbors. Thus, non-linear, sharp spatial changes will be poorly
handled anyway by image processing operations. This is regardless of what space we operate in.

I think it is clearer to refer to reflectivity factor, regardless of the units, as reflectivity factor and then to specifically
indicate whether its units are linear or logarithmic. Rinehart (2010) keeps these distinct by using a lower case z
to indicate that the radar reflectivity factor units are linear and an upper case Z to indicate that the radar reflectivity
factor units are logarithmic. While I am not suggesting that you have to do this, the use of the symbol dBZ to
indicate logarithmic units is a bit awkward, in my opinion, since dBZ indicates units, not the variable itself. One
would not, for instance, label an east-west distance variable as ft.

This is something I went back-and-forth on. I decided to use the terminology in this paper because it is much
clearer (when spoken, for example) than the z-Z dichotomy. Somewhat equivalently, we could talk about working
in standard-atmospheres or hPa and I believe most people would understand whether we are working with ratios
or millibars.

REVIEWER B (Mario Majcen):

Initial Review:
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Recommendation: Accept with minor revisions

General comments:

The paper is acceptable with minor revisions and no further review is requested unless major changes are made in
accordance with other reviews. I really enjoyed reading this manuscript. It reveals a fallacy behind a commonly
used data manipulation technique.

REVIEWER C (David Dowell):

Initial Review:

Recommendation: Accept with minor revisions

General comments: This short, focused article summarizes results of an important study for radar-data analysis.
The writing style is somewhat informal, which mostly works for this article. A few instances where more precise
and/or formal wording would help are mentioned below. Also, some suggestions are provided to avoid overstating
results, resulting in a stronger manuscript.

Substantive comments: In paragraph 2, the motivation for the study relies on hearsay. Can we instead refer to
more concrete evidence (preferably publications) that the community often favors Z processing over dBZ?

As stated in the manuscript, the literature on the topic has it right — published work in this area involves processing
dBZ, not Z. I would hypothesize that even believers in Z quickly discover that it doesn’t work well, and resort to
working in dBZ. Thus, I was unable to find any publication doing anything in Z.

p. 3, column 2, paragraph 1: If retained, the discussion This is the same neighboring pixels. belongs earlier in
the manuscript and requires more explanation. Or maybe this discussion can be deleted entirely.

This is an important point. I’ve retitled this section “Discussion” and added the link text that we are going beyond
linear interpolation to addressing any linear filtering operation.
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