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1. Introduction 
 

Traditional methods of calculating rotational 
and divergent shears from Doppler radial 
velocity data can give results that vary widely 
from the true value of shear for the 
meteorological feature being sampled.  Some 
factors that must be considered include noisy 
data, the azimuthal offset of sample volumes 
from the center of the feature (Wood and Brown 
1997), and the radar viewing angle.  One 
commonly used technique relies simply on the 
difference of the maximum and minimum radial 
velocity within a rotation or divergence feature.  
This method is plagued with uncertainties in the 
values of the shear estimates as well in locating 
the center of a shear feature.   This work 
illustrates results from a two-dimensional, local, 
linear least squares (LLSD) method to minimize 
the large variances in rotational and divergent 
shear calculations. 
 

There are several benefits of using LLSD 
first derivative (shear) estimates.  They are 
tolerant of the noisy data which are typical of 
radial velocity data.  LLSD data are adaptable to 
various spatial scales.  Two-dimensional LLSD 
techniques are more noise tolerant than one-
dimensional LLSD techniques, but give lower 
values of shear as a result.   
 

Besides creating greater confidence in the 
value of intensity of meteorological features that 
are sampled, the LLSD method for calculating 
shear values has several other advantages.  
The LLSD removes many of the radar 
dependencies involved in the detection of 
rotation and radial divergence (or radial 
convergence) signatures.  Thus, these 
derivatives of the radial velocity field may be 
viewed in three-dimensional space or used as 
input to multi-sensor meteorological applications 
that are require more than one radar as input.  
Additionally, fields of these radial estimates of 

rotation and divergence have specific signatures 
when boundaries or circulations are sampled.   
 

This manuscript describes how the 
derivatives are calculated as well as how the 
rotational and divergent LLSD compares with 
the less-robust (but frequently used) “peak-to-
peak” estimates of azimuthal shear and radial 
divergence.  We use idealized models to 
quantify the errors of the LLSD and “peak-to-
peak” estimates.   Finally, we show examples of 
how this technique performs on radar data 
collected during convective events. 
 
2. Method 
 
a. Derivation 
 

Elmore et al. (1994) describe a method for 
estimating divergent shear from single Doppler 
radar data for use in calculating headwind loss 
estimates for aircraft that encounter microbursts.  
The rotation portion of the derivative was also 
derived by Elmore et al. (1994), but not utilized 
for microburst detection.  The LLSD technique 
was implemented in NSSL’s Damaging 
Downburst Prediction and Detection Algorithm 
(Smith et al. 2004) for detecting low-level 
outflows and mid-level convergence and rotation 
in storm cells.  Mitchell and Elmore (1998) first 
explored the uses of the LLSD for identifying 
regions of high shear in mesocyclones and 
tornadic vortex signatures.  We have built upon 
these earlier works in order to improve the 
robustness of the LLSD and to evaluate its 
performance as a tool to interrogate 
meteorological features detected by Doppler 
radar.  The derivation (Elmore et al. 1994) 
follows. 

 
If we let u(r,θ) be the radial velocity at range 

r and azimuth angle θ, then the most obvious 
way to estimate the divergent and rotational 
derivatives is to calculate ur (the partial 
derivative of u with respect to r) and us (the 



 partial derivatives of u with respect to θ).  The 
idea is to treat u(r,θ) as a scalar field since we 
have no information about the true direction of 
the wind at a point (r,θ).  We would like to 
compute (ux, uy) (the gradient).  This vector 
gives the direction of the most rapid change in 
the field, and the magnitude of this vector gives 
the largest rate of change in any direction at the 
point.  Since the data is not given in Cartesian 
coordinates, but in polar coordinates from the 
radar, we introduce some new variables that are 
easier to use. 

(Σ∆ri
2wij)ur + (Σ∆ri∆sijwij)us + (Σ∆riwij)u0 = Σ∆riuijwij , 

 
(Σ∆ri∆sijwij)ur + (Σ∆si

2
jwij)us + (Σ∆sijwij) u0 = Σ∆sijuijwij , 

 
(Σ∆riwij)ur + (Σ∆sijwij)us + (Σ∆wij) u0 = Σ∆uijwij , 
 
where Σ is over all i and j , and uij is the data 

uij = u(ri, sij).  We next assume symmetry in the 
data locations about the point (r0, s0).  For 
example, we assume i runs from –N,…,0,1,….,N 
and j runs from –M,…,0,1,…,M.  Using these 
symmetry assumptions, all off-diagonal 
coefficients vanish.   This leaves a simple 
diagonal system to solve: 

 
At the point (r,θ), we introduce the variable s 

= rφ , where φ is the signed angle measured 
from the reference line θ , with positive angles 
measured in the counterclockwise direction.  
Once can show (using the chain rule) that ur

2 + 
us

2  = ux
2 + uy

2  at (r,θ).  So the largest rate of 
change of the field in any direction at (r,θ) is 
given by: 
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We now give estimates for ur and us.  We 

assume the data are given at regular intervals of 
∆r and ∆φ.  This assumption makes our 
computations fast, since we can give our 
estimates in closed form. 
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 We fit the data locally by a model of the 

form: b. Application 
  
In order to make LLSD calculations on a 

polar grid of radial velocities, the data are 
passed through a 3x3 median filter to reduce 
noise.  Then we apply the formulae for ur and us.  
Because ur and us are derived from only the 
radial component of the wind, they are 
approximations of one half the horizontal 
divergence (“half divergence”, hereafter) and 
vertical vorticity (“half vorticity”, hereafter), 
respectively, assuming a symmetric wind field.  
This symmetry assumption works well in the 
vicinity of features that may be purely rotational, 
such as mesocyclones, or divergent, such as 
symmetric downburst signatures.  Although it 
breaks down for asymmetric features such as 
gust fronts, useful information may still be 
gleaned from the LLSD output in many cases. 

 ũ(r,s) = u0 + ur(r-r0) + uss. 
 
At the point (ri, φj) , ∆ri = ri – r0 = i∆r and sij = 

riφj = (r0 + i∆r)(j∆φ). Let ∆sij = (sij – so) where we 
have taken so = r0φ0 = 0, since we have φ0 = 0.  
We pick our model by a least squares method, 
i.e. we pick the constants u0, ur, us as to 
minimized the quadratic  

 
R = Σ [u(ri,sj) – ũ(rj,sij)]2 wij ,  
 
where wij is a weight function with wij > 0 and 

w-I,j = wi,j and wI,-j = wi,j for all I and j.  This 
symmetry assumption allows for a simple 
closed-form solution for u0, ur, us.  The normal 
equations are given by 
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Due to the nature of polar grids, the size of 
the kernel that is used in the LLSD calculations 
varies in range.  We have chosen to use a 
kernel that maintains a nearly constant width in 
Cartesian space, meaning that the number of 

 
Expanding the above, we obtain the normal 

equations: 
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Figure 1: The number of azimuths used for a 
2500 m wide kernel by range. 
adials used by each radar pixel is a function of 
ange.    

Figure 2: Mean and 95% confidence limits for 
LLSD and peak-to-peak estimates of azimuthal 
shear at the vortex center for a 5 km diameter 
vortex with half vorticity of 0.01 s-1. 

 
. LLSD Rotational Shear 

 
LLSD rotational, or azimuthal, shears are 

alculated for simulated circulation signatures of 
ifferent sizes and at different ranges from a 
ypothetical radar with 1° azimuthal spacing in 
rder to compare with traditional methods of 
stimating the strength of circulations.  We use a 
ankine combined vortex model to generate 
imulated circulation signatures in the Doppler 
adial velocity field (Wood and Brown 1997).  

e superimpose 2 ms-1 uniform noise on the 
adial velocity field to test the robustness of the 
LSD calculations. 

 
We compare the LLSD values to the more 

raditional “peak-to-peak” azimuthal shear 
alculation, given by 

 

d
VV
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minmax -

=
 

 
here Vmax and Vmin are the maximum outbound 
nd minimum inbound radial velocities (on 
pposite sides of a circulation), respectively, and 
 is the distance between those two peaks.  For 

he rotational LLSD calculations, we choose 
hree different kernel sizes that are each 3 range 
ates deep and approximately 2500 m, 5000 m, 
r 8000 m wide.  Thus the number of radials 
sed in the calculation varies with range from 

he radar (Fig. 1), although a minimum of three 

radials of data are required for a complete 
calculation.  Kernels that use a fixed number of 
radials at all ranges usually only provide good 
shear estimates in a small percentage of those 
ranges. 

Figure 3: Mean and 95% confidence limits for 
LLSD and peak-to-peak estimates of azimuthal 
shear at the vortex center for a 8 km diameter 
vortex with half vorticity of 0.01 s-1. 

 



 
To test the variability of the three LLSD 

kernels, we generate synthetic radial velocity 
signatures of vortices at ranges every 5 km from 
20 km to 200 km.  Because radar data suffer 
from many imperfections, including noise and 
sampling issues that can affect azimuthal shear 
values (Wood and Brown 2000), 1000 vortices 
of the same size and strength are generated at 
each range, each with different noise patterns 

and azimuthal offsets to the center of the 
simulated vortex.  This allows for calculation of 
mean azimuthal shear values and 95% 
confidence intervals for the three LLSD kernels 
and uas. 

Figure 4:  The distribution of range positional 
errors for the 2500 m LLSD kernel (top) and 
the peak-to-peak azimuthal shear estimate 
(bottom) for a 5 km diameter vortex.  The 
center grey line is the median, the box is the 
interquartile range (IQR), the whiskers are the 
lesser of 1.5x(IQR) or the data range, and the 
single dots are outliers. 

Figure 5:  Same as Fig. 3, except for azimuthal 
position error. 

Figure 2 shows the 2500m LLSD kernel and 
peak-to-peak azimuthal shear estimates for a 5 
km diameter vortex with half vorticity of 0.01 s-1.  
In this case, the mean LLSD value is within 
about 20% of the true value out to about 140 
km, with a much smaller variance than that of 
the peak-to-peak azimuthal shear calculations.  
These values drop with range because of the 
geometry of the radar beam – circulations are 
not well sampled at long ranges.  For a larger-
scale 8 km diameter vortex (Fig. 3) sampled with 



the 2500 m kernel, the mean LLSD values are 
within 5% of the true value out to about 150 km.  
For brevity, results from the 5000 m and 8000 m 
kernel are not shown.  However, these larger 
kernels tended to underestimate the strength of 
smaller vortices compared to the 2500 m kernel. 

Because we use synthetic radar data, the 
true location of the center of the circulation is 
known. Range and azimuthal position errors 
were calculated for both the LLSD and peak-to-
peak methods.  For azimuthal shear, the center 
of circulation was considered to be halfway 
between velocity absolute maxima on each side 
of the circulation.  The NSSL Mesocyclone 
Detection Algorithm (Stumpf et al 1998) uses 
this method to determine the center of a 
circulation.  For the LLSD rotation, the center of 
circulation was considered to be at the LLSD 
rotation maximum.   

 
The errors in range (Fig. 4) for both methods 

are quite similar, although the variance is 
smaller for the LLSD estimate.  However, the 
azimuthal distance errors (Fig. 5) for the peak-
to-peak method are significantly larger than the 
LLSD.  Additionally, the distribution of the peak-
to-peak location estimates is not Gaussian.  This 
is illustrated in Fig. 6.  While the LLSD position 
estimates are clustered around the center of the 
diagram, there are three distinct groupings for 
the peak-to-peak data.  Because the peak-to-
peak method only uses two data points in its 
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Figure 7:  Insets (c) and (d) show 
conventional displays of reflectivity and 
velocity data available from Doppler weather 
radar. The image in (a) is a depiction of 
shear within the storm that is computed from 
the velocity data shown in (d). The red spots 
indicate locations with high shear. A slow 
northward movement of the high-shear areas 
with time is depicted as “rotation tracks” in 
(b). The graphic in (b) summarizes hours of 
velocity data into information a human 
decision maker can immediately use.  
(Scharfenberg et al. 2004). 
Figure 6: Scatter diagram of positional errors 
for the peak-to-peak azimuthal shear estimate 
and the LLSD estimate of the center of 
circulation for a vortex at 120 km range. 
alculations, it is highly susceptible to errors 
aused by the radial offset from the center of the 
irculation and noise. 

 
. LLSD Radial Divergence 

LLSD radial divergence values are 
alculated for simulated divergence signatures 
f various sizes at different ranges from a 
ypothetical radar with 1° azimuthal spacing and 
50 m range sampling.  Results will be shown in 

he accompanying poster presentation. 
 

 
.  Application 

LLSD products have been successfully 
ested in an operation environment over a period 
f several convective seasons (Scharfenberg et 
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Figure 8: Reflectivity (top-left), radial velocity (top-right), LLSD divergence (bottom-left), and LLSD 
rotation (bottom-right) for depicting gust front. 

l. 2004, Stumpf et al.).  LLSD azimuthal shear 
ay be used to locate areas of rotation within a 

torm cell and to assess the history of the 
irculation signature (Fig. 7).  This, in turn, has 
een used to locate areas where damage 
ssessments crews should focus their efforts 
uring post-event damage surveys. 
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LLSD divergence and azimuthal shear fields 
ay be combined to assess the presence of 

adar-detectable boundaries.  Figure 8 shows a 
ust front, which is most notable in the 
ivergence field in this example.  Typically, 
oundaries that run perpendicular to the radar 
eam may be seen in the divergent LLSD field 
s convergence, while those parallel to the 
eam are better seen in the rotational LLSD 
ield.  Image processing applications may make 
se of these data to better identify boundary 
ignatures. 
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